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This paper reports on an investigation into managing cognitive conflict in the context of 
student learning about decimal magnitude. The influence of prior constructs is examined 
through a brief review of the literature. A micro-genetic approach was used to capture detail 
of the teaching intervention used to facilitate development in student thought. A framework 
for considering cognitive conflict in lesson design is presented, and a case is made for the 
use of measurement tasks to generate data. 

Proficiency with decimal numbers is essential for progress in school mathematics and 
for financial and statistical literacy in adults. Student difficulties with decimal numbers are 
well documented. In New Zealand for example, recent reports showed that only 50% of 
Year 8 students could identify tenths and hundredths and even fewer were able to correctly 
order decimal numbers (Flockton, Crooks, Smith & Smith, 2006; Young-Loveridge, 2007). 
This paper reports on part of a larger study into how students engage with the cognitive 
demands of new material that contradicts their previously-held schemata. A specific focus 
of decimal magnitude has been selected because while the causes of student 
misconceptions have been clarified, an ongoing lack of student achievement indicates a 
need to address further the factors that will help design more successful teaching 
interventions (Okazaki & Koyama, 2005).  

Background 

In variation theory, learning is seen as attending to those features in novel problems 
that are similar to, or vary from, existing knowledge. Variation theory occupies a niche 
within Piaget’s equilibrium model of learning. Points of both connection and distinction 
need to be recognised by students when encountering new situations. This enables the self-
perception that one’s thinking needs re-organisation (Runesson, 2005). Cognitive conflict 
is a term used to describe the tension created when new evidence is recognised by the 
student as contradicting previous knowledge. The agency is with the learner as the teacher 
can only provide situations of potential conflict. Resolution of that conflict may result in 
new learning, as points of both connection and difference are recognised and responded to. 
This process has been termed re-constructive generalisation (Harel & Tall, 1991).  

A failure to recognise the disjunctive elements of new problems may lead to the mis-
application of previous understandings about number. This process has been termed 
expansive generalisation (Zazkis, Liljedal & Chernoff, 2008). With regard to errors 
concerning decimal magnitude, researchers have found almost complete correspondence 
between student answers and their underlying schema (Nesher & Peled, 1986). This is 
evidence that these answers are not mistakes in terms of the students’ perspective but 
indicative of their conceptual understanding. 

There are two common expansive generalisations regarding the magnitude of decimals. 
One is where students think that the decimal point serves to separate two, whole-number 
systems and is often termed whole-number thinking. Students transfer the whole number 
truth that ‘longer is larger’ to decimals. To decide relative magnitude, students view the 
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whole number sections first and make a decision if these are unequal. If not, they then look 
at the length of the section after the decimal point e.g. 1.23 is regarded as smaller than 2.5, 
but larger than 1.8. Another is where a ‘shorter is larger’ system is applied, resulting from 
students misapplying their understanding of denominators. A larger denominator indicates 
a smaller fraction (given identical numerators). The system results in 0.6 being interpreted 
as sixths, and therefore larger than 0.65, as this is interpreted as sixty-fifths. Students who 
make errors with decimal magnitude  typically apply one of these systems or a sub-variant 
of them (Steinle & Stacey, 1998). 

It is not the existence of prior constructs per se that is the problem, rather it is their 
durability in spite of teacher-provided evidence to the contrary, the ‘obstinacy 
factor’(Harel & Sowder, 2005). Research suggests that primitive schemata are deeply 
embedded and difficult to change (McNeil & Alibali, 2005). Counter-examples to prior 
constructs are not necessarily effective catalysts for change as the novelty of new, 
externally-provided information can be unrecognised, compartmentalised or disregarded 
by students (Zazkis & Chernoff, 2008). Disequilibrium is avoided when students fail to 
recognise any contradiction and simply assimilate new material into their previous way of 
thinking. They operate with systems that are consistent with their internal schemata and are 
confused as to why some of their answers are regarded as incorrect by the teacher. 
Cognitive conflict is also avoided when students uncritically adopt the algorithms 
advocated by teachers. For example, some students are told to line up the decimal points or 
to add zeroes (sic) to make decimals of equivalent length in order to ascertain magnitude. 
These students may temporarily comply with a procedure but may subsequently revert to 
behaviours consistent with their prior construct (Siegler, 2000). 

The diagram below serves to summarise possible learning experiences and educational 
outcomes. 

 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 

Key:   Teacher Action  Student Response   Learning Outcome 

Figure 1. A Framework for Considering Cognitive Conflict in Lesson Design (Adapted from Moody, 2008) 
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Understanding decimal magnitude requires integration of the place-value convention of 
recording digits in columns with fractional understanding of denominators. Existing 
student constructs need not be regarded as problems but as sites to anchor new meaning. 
The linkage of new symbols and systems to concrete referents is seen as an important first 
step in understanding new concepts (Goldin & Shteingold, 2001). Equipment may 
faithfully represent the mathematics from the teacher’s understanding, but it is the 
perspective of the student that will determine its efficacy as a learning tool (Stacey, Helme, 
Archer & Condon, 2001).  

Situations where students have been creators of the evidence that produce cognitive 
conflict are seen as having great potential to initiate change. If students anticipate a 
particular result but are subsequently confronted with one that is unexpected, it may initiate 
deeper consideration of the prior construct, an activity that has been termed ‘reflection on 
activity-effect relationships’ (Simon, Tzur, Heinz & Kinzel, 2004). Some studies have 
shown that real-life experiences, whether enacted in the classroom or recalled from outside 
it, have facilitated shifts in thinking about decimals (e.g. Irwin, 2001). Measurement offers 
a powerful means of engaging students with number because relative magnitude is 
transparent. Students have a concrete reference for the symbol used to describe the quantity 
(Sophian, 2008). Use of metres and centimetres does not always help with decimals 
however as the common use of language (e.g. 1 metre and 45 centimetres for 1.45m) may 
reinforce the whole-number expansive generalisation. 

In order to investigate the mechanism of conceptual change, intense collection of in-
situ data of student engagement with a situation of potential conflict is required. Standard 
cross-sectional studies lack the temporal resolution to capture evolving (rather than 
evolved) competence and the subtlety of interactions as learning occurs (Lamon, 2007; 
Seeger, 2001). These considerations led to the adoption of micro-genetic methods (Siegler, 
2007).  

Method 
Six students who were ‘at, but not above’ national expectations in mathematics were 

involved after consultation with the classroom teacher, the parents and the students 
themselves. They could order unit fractions but had received no formal teaching of 
decimals. In the study I was both the teacher and the researcher.   

A design experiment model was used (Cobb, Confrey, Di Sessa, Lehrer & Schauble, 
2003). Baseline data were collected via a personally modified version of the Decimal 
Comparison Test (DCT) designed by Stacey & Steinle (1999). The DCT has 30 pairs of 
decimals for comparison by magnitude. A group interview was also conducted. From these 
data, 5 intervention sessions were planned of approximately 45 minutes each. While a 
likely sequence of events was mapped, this methodology allowed for ongoing reflexive 
interaction between student responses and teacher initiatives (Gorard, Roberts & Taylor, 
2004).  

The enacted plan had sessions that focused upon the iteration of non-unit fractions 
including tenths, an introduction to decimal notation via equipment use, practical 
measurement tasks, games using decimals, and a brief exposure to additive tasks. No notes 
or formal procedures were given to the students. Instead, tasks were presented and 
conversations arose as students engaged with them, sometimes between pairs of students, 
as well as individual and group discussions with me. All dialogue was recorded using 
audio-tape and supplemented with collections of student work and personal field notes. 
These data were complemented by pre-and post-intervention interviews and written tasks.  
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Much of the practical work in sessions 2 and 3 centred upon the use of a commercial 
product known as Pipe Numbers. Pipe Numbers are a set of plastic tubing cut to scale with 
1, 1/10 and 1/100 pieces. They are a linear model of the number system and conceptually 
identical to the Linear Arithmetic Blocks (LAB) described by Helme and Stacey  (2000). 
The portability of Pipe Numbers enhances their suitability for use in measurement tasks. 

Results 
This section documents evidence of the initial and final thinking of all of the 

participants and especially tracks the learning of Grace and Wini (as representatives of the 
two common expansive generalisations) via samples of conversation and written work.  
Table 1 
Details of Participants  
Pseudonym Gender  Ethnicity Age System   Consistency 
       Descriptor  Score* 
Mary  F  Pakeha   9 No pattern  n/a 
Ripeka  F  Maori   9 Longer larger  100 
Tame  M  Maori   9 Longer larger  100 
Grace  F  Pakeha  10 Longer larger  100 
Wini  F  Maori  10 Shorter larger    93 
Aroha  F  Maori  10 Shorter larger    87 
* The consistency score is the percentage of answers that conform to the system descriptor. 

During session 1, the students made models of non-unit fractions, including using the 
Pipe Numbers to model tenths. They were introduced to the convention that a fractional 
quantity involving tenths could also be represented in decimal notation, e.g. 3/10 as 0.3. 
The following excerpt comes from session 2 of the intervention. Students were again 
making models of numbers using the Pipe Numbers equipment but were given a new 
challenge.  
 Teacher:  See if you can make this one, 0.12.   
Wini:   That’s twelve!  
Teacher:  OK, see what you will make. [Not giving validation or refutation, but simply asking that 

the task be carried out]. 
Wini:   Twelve! Got it! (Showing a model that used twelve tenths). 
Teacher:  So you’ve put twelve of those tenths on, OK, what does that symbol tell us? (Pointing to 

zero). 
Wini:   Zero.  
Teacher:  How many ones is that? (Pointing to 0.12 written on the board).  
Wini:   Zero.  
Teacher:  But your one (meaning her model) is bigger than 1.  (Wini went away and returned a few 

minutes later with a new model). 
Teacher:  OK, you’re using some of those little ones. You’ve got ten tenths and two of those little 

ones. (Wini was making another model using twelve pieces). So you’ve made me a whole 
one and those little ones. You’ve made me 1.02. 

Wini:   I don’t get it!  
Teacher:  That’s OK, I never said this one would be easy, it is hard. 

As the teacher, I resisted the urge to ‘help’ her and thus bypass her personal agency to 
learn. Wini adjusted her model by replacing one of the one-hundredth pieces with a one-
tenth piece. Her model still involved twelve pieces, but a new piece of feedback was 
possible. 
Teacher:  That is 1.11  
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Wini:   (After a pause) Oh!  
She then adjusted her current model to the correct one, gave me an expectant look, and 

then received a nod. She had used the information received from my responses (1.02 and 
1.11) and reinterpreted how the task would be completed. Her responses to subsequent 
tasks showed that she had not merely interpreted the physical model but was engaging with 
the underlying place value concept. 

In session 3, students measured and recorded lengths of objects in the room. Recording 
and presenting each set of measurements on A3 paper allowed the students to see and 
discuss each other’s data. 
    Site 1      Site 2 

 
   Site 3 

Figure 2.  Photograph of Student Work by Grace and Wini 

Table 2 
Comparison of Students’ Initial and Final Responses to the DCT 
Pseudonym      Initial System  Consistency Final System Consistency 
 Descriptor Score Descriptor Score 
Mary No pattern n/a Correct to 2dp  90 
Ripeka Longer larger 100 Correct  93 
Tame Longer larger 100 Correct  97 
Grace Longer larger 100 Correct  97 
Wini Shorter larger  93 Correct 100 
Aroha Shorter larger  87 Correct 100 
 

Each student was then directed to three pairs of examples from their two DCT scripts 
and asked to explain why they had made changes. Their scripts were unmarked so as not to 
provide external validation of either response. The student’s new answer is underlined. 
Wini:   (0.55 and 0.555) Five thousandths more.  (Previously a ‘shorter is larger’ system was used.) 
Grace:  (0.75 and 0.8) It’s larger, it has an extra tenth; when I first started I thought that (pointed to 

0.75) was the highest because of seventy-five. (Previously a ‘longer is larger’ system was 
used.) 

The students’ knowledge of decimals was re-assessed after 6, then 16 months and 
found to be secure. 

Discussion 
The initial data showed that 5 of the students were consistently working from secure 

prior constructs as predicted by earlier research (e.g. Nesher & Peled, 1986; Steinle & 
Stacey, 1998). These constructs can be described as expansive generalisations as the 

Heights of the girls 
were recorded. Real 

names were used and 
so have been hidden. 
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procedures arising from them can be explained as the misapplication of a previously 
observed rule (Harel & Tall, 1991; Zazkis et al, 2008).  

In accordance with the application of variation theory (Runesson, 2005), the 
similarities and differences between prior knowledge and new evidence arose in 
meaningful ways for the students. The cognitive conflict this awareness created was 
managed by the teacher in order to address the issue of resistance to change (McNeil & 
Alibali, 2005; Zazkis & Chernoff, 2008). For example, in the transcript excerpt from 
Session 2, Wini was confronted with two ‘truths’ that could not simultaneously co-exist. 
0.12 must represent twelve tenths according to her whole-number schema, but the 
knowledge that ten tenths was equivalent to one whole was also known to be true from her 
understanding of fractions. The conflict arose from the unexpected result (Simon et al, 
2004) and resolving this tension is a vital part of re-constructive generalisation according 
to Harel & Tall (1991). The benefit of simultaneously using concrete referents (Stacey et 
al, 2001), realistic problems (Irwin, 2001) and measurement tasks (Sophian, 2008) can be 
seen when examining three items from the work sample of Grace and Wini shown in 
Figure 2. 

At site 1, the chair’s measurements were originally recorded as 4/10 and 2/100. This 
indicated that the students were initially thinking in fractional terms from using the Pipe 
Numbers and then applying their new proficiency with decimal notation. They could 
interact with one place value column at a time. The common pronunciation of “point four 
two” does little to convey meaning. Encouraging students to decode the symbol as four 
tenths and two hundredths may help reinforce the connection between the new symbol and 
the more familiar expression of that quantity. As Goldin and Schteingold (2001) suggested, 
developing clear links between quantity, vocabulary and symbol is critical for new 
understanding.  

At site 2, the girls knew that they were very similar in height but in ‘longer is larger’ 
terms, 1.22 is much bigger than 1.2, while in ‘shorter is larger’, it’s much smaller. This was 
a meaningful context where two decimals can be demonstrated as being of similar size 
despite there being a different number of digits used to represent the quantity. 

At site 3, the length of the switch (0.02), was seen as smaller than the entire light fitting 
(0.1), and thus attention was drawn on the place value of the digits used to record the 
measurement. This stands in contrast to the large number of Year 8 students in the NEMP 
study who could not distinguish 0.7 from 0.07 (Flockton et al, 2006).  

Decimals in the context of games and in tasks that did not use pipe numbers were 
important in establishing whether place-value thinking was changing or simply mastery of 
a new manipulative was being exhibited. It appeared that the students were able to see past 
the materials to the mathematics in that they were applying place-value language to make 
decisions concerning magnitude and were extending such discussions beyond tenths and 
hundredths, the limit of the physical representation. For example, in the student-initiated 
discussion of thousandths, the students had begun to consider the decimalisation process as 
generalisable. They started to discuss the equipment in terms of what it could be, rather 
than what it was. It is these glimpses of insight into how small experiences can lead to 
conceptual change that micro-genetic study is especially suited to capture (Siegler, 2007).  

The final DCT data indicated that all students had improved in their ability to order 
decimal numbers. It was inferred that this was due to a reconstruction of their place value 
schemata as they had not been given any new procedures to adopt. The high consistency 
scores showed that the students were working from stable schema. This did not imply that 
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their previous schemata had been totally eliminated from their thinking but that currently 
the new conception was clearly dominant (Siegler, 2000).  

Conclusion 
This study investigated the mechanism of conceptual change with respect to decimal 

magnitude. This was in response to continuing reports of student difficulties (e.g. Flockton 
et al, 2006) and in recognition that the change process is complex and required further 
investigation (McNeil & Alibali, 2005). Its findings demonstrate that it is possible to 
stimulate cognitive conflict by involving students in practical tasks and providing them 
with feedback on the contradictions that arise between new evidence and prior thinking. It 
is thought that student production of evidence was an important factor in initiating steps 
towards conflict resolution. The need to unambiguously communicate measurements may 
have helped the students to appreciate why they should discontinue use of an expansive 
generalisation. Self-realisation of the reasons for change is a factor in countering the 
durability of primitive schema (Harel & Sowder, 2005). As Zazkis and Chernoff (2008) 
suggested, students who exercise personal agency when faced with potential cognitive 
conflict are more likely to respond to counter-examples with new learning than those 
where expert opinion is simply presented to them.  

In agreement with Sophian (2008), the findings of the study also showed that the use of 
a measurement-based system to represent numbers has much to commend it. Combining 
this system with practical activities allowed for student engagement with issues of decimal 
notation as these arose in context. Their resolution could proceed at the pace of student 
thought and at student-chosen moments without the teaching agenda being compromised. 
As Siegler (2007) suggested, the use of a micro-genetic approach allowed for the capture 
of important details of student learning. These provided insight into the thoughts of 
students as learning occurred. It is suggested that further studies are undertaken into the 
mechanisms whereby situations of potential cognitive conflict result in student re-
conceptualisation, particularly in areas of known learning difficulty. 
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