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Mathematics educators and mathematics standards of curriculum have emphasised the 
importance of constructing the interconnectedness among mathematic concepts (“conceptual 
understanding”) instead of only the ability to carry out standard procedures in an isolated 
fashion. Researchers have attempted to assess the knowledge networks in students’ minds. 
A technique that has gained popular use in science education over the past three decades is 
concept mapping. This paper examines students’ conceptual understanding about triangle 
concepts using concept maps, and an analysis of the maps using degree centralities derived 
from social network analysis has demonstrated new insights through this novel technique. 

Mathematics concepts are logically interconnected. This interconnectedness manifests 
as coherent knowledge networks, which can be hierarchical or non-hierarchical (web-like). 
For many years, psychological and educational research on the learning of mathematics 
has emphasised this interconnectedness as conceptual understanding (Bransford, Brown, & 
Cocking, 1999; National Council of Teachers of Mathematics, 2000). An important issue 
concerning this emphasis is how to assess these relationships expressed as cognitive mind 
maps or knowledge networks so that the information can be used by teachers to plan 
lessons, and by curriculum developers to take into consideration the psychological, in 
addition to, the logical knowledge relationships. A technique that has been applied widely 
in science education over the past three decades is concept mapping. 

A concept map can be a “window into the mind” (Shavelson, Ruiz-Primo, & Wiley, 
2005, p.1). It is generally defined as a two-dimensional map consisting of nodes 
representing concepts and labelled lines denoting the relations between pairs of nodes 
(Novak & Cañas, 2009). These nodes can be mathematical concepts, examples and non-
examples of the concepts, diagrams, symbols, and formulas. The labelled lines, also called 
linking phrases, can be verbs or phrases. These labelled lines are usually directional. When 
two or more concepts are linked, statements are formed, and these statements are called 
propositions (Novak & Gowin, 1984). Thus, a concept map provides an externalised 
representation in the form of a directed graph of how a person has linked various ideas. 

Different methods have been used to interpret the information embedded in concept 
maps and to score them for assessment purposes. Initially, Novak and Gowin (1984) 
considered four aspects for scoring: validity of propositions, hierarchy, cross links, and 
examples. An updated version includes six criteria to evaluate the map from the concept 
level to the whole map: “concept relevance and completeness, correct propositional 
structure, presence of erroneous propositions, presence of dynamic propositions, number 
and quality of cross links, and presence of cycles” (Novak, 2010, p. 235). Other 
researchers in mathematics education have described specific aspects of concept maps 
rather than use systematic coding (see chapters in Afamasaga-Fuata'I, 2009). While these 
methods have achieved different assessment purposes, more attention could be given to the 
properties of individual concepts (nodes). For instance, Jin (2007) counted the number of 
incoming and outgoing links to each node. The incoming links represent the chance to 
activate this node from other nodes in the concept map; the outgoing links indicate the 
power of this node to connect to other nodes. However, examining only these attributes of 
individual nodes does not provide insights about the whole concept map, including dyadic 
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properties of directed links. This paper attempts to fill this gap by applying social network 
analysis to analyse the properties of the individual nodes and the entire map of concept 
maps created by students. 

Social network analysis (SNA) includes several techniques that use the language of 
mathematics graph theory to study social relations among people within communities. It 
uses a variety of attributes such as centrality, betweenness, closeness, and clique (Degenne 
& Forsé, 1999; Wasserman & Faust, 1994) to describe such relations. However, we have 
not found any use of SNA to the study of concept maps. Thus, we attempt to apply SNA to 
the study of Grade 8 students’ concept maps of triangle concepts. Combining this form of 
analysis with specific discipline (mathematics education in this case) may yield fresh 
insights about the students’ conceptual understanding. In this paper, we will consider only 
degree centrality analysis, to be defined in a later section. 

Methodology 
Participants 

The participants were 48 Grade 8 students (24 boys and 24 girls) from a junior middle 
school in Nantong, China. They did not have prior experience of concept mapping. 

Training and Concept Map Task 
The students first received four 40-minute training sessions on concept mapping. The 

training, which was developed through several attempts reported in Jin and Wong (2008), 
was to ensure that the students knew what a concept map was and how to construct 
meaningful concept maps. Unlike the training programs in traditional concept mapping 
studies (e.g., Ruiz-Primo, Schultz, Li, & Shavelson, 2001), detailed linking phrases were 
emphasised in this training. At the end of the training sessions, the students’ concept 
mapping skills (CMS) were tested with a specially designed CMS-Test. Preliminary 
analysis of the results of the CMS-test indicated that the students had developed the 
necessary skills to construct meaningful concept maps. 

After taking the CMS-test, the students were given a list of eleven concepts related to 
triangle. These concepts were listed in this order (translated from Chinese): triangle, 
acute-angled triangle, right-angled triangle, obtuse-angled triangle, scalene triangle, 
isosceles triangle, equilateral triangle, angle, symmetry axis, median, and midline. These 
concepts were taken from their Grade 7 mathematics textbook (in Chinese). The students 
were given a piece of blank paper and were told that they could add extra concepts to their 
concept maps if they found them related to the given ones. They were allowed to construct 
either a hierarchical or non-hierarchical map. Thirty minutes were allowed for the students 
to construct concept maps individually. This was a free-style mapping task (Ruiz-Primo, 

Shavelson, Li, & Schultz, 2001). This paper reported the network analysis of these student-
constructed concept maps. 

Data Analysis: Degree Centrality 
Degree centrality measures the extent to which a node connects to all other nodes in a 

network (Knoke & Yang, 2008). In a directed network, there are two separate measures of 
degree centrality depending on the direction of links: in-degree centrality and out-degree 
centrality. In-degree centrality of a node counts the number of incoming links directed to 
the node, and out-degree centrality counts the number of outgoing links from the node 
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(Durland, 2006). They are defined as IDC (in-degree centrality) and ODC (out-degree 
centrality):  

           and           

where xij is the number of direct links from node j to node i and yij is the number of direct 
links from node i to node j. Normally, xij equals to 0 or 1, and the same for yij. Thus, 

counts the number of incoming links from the other (n – 1) nodes to node i and  

counts the number of outgoing links from node i to the other (n – 1) nodes.  
The total degree centrality (DC) of node i is then defined as . 

These degree centralities reflect the connectivity of an individual node to other nodes in a 
network. For different networks consisting of the same nodes, the in-degree and out-degree 
centralities allow comparison of a node’s connectivity across the networks. The larger the 
in-degree centrality, the higher is the popularity of a node in a network, and the larger the 
out-degree centrality, the higher is the influence of a node in the network (Durland, 2006).  

Definitions of degree centrality can be extended to the whole network. Freeman (1979, 
cited in Wasserman & Faust, 1994) proposed a generic measure of group degree centrality 
(GDC) for undirected network with n nodes, which was afterwards revised by Wasserman 
and Faust (1994, p.180) as: 

 

where DC(i) refers to degree centrality of node i in the undirected network, DC(N*) 
denotes the largest degree centrality observed in the network, and the denominator is the 
theoretically maximum possible sum of those differences.  

Group degree centrality is used to measure the extent to which the nodes in a network 
differ from one another in their individual degree centrality. The larger the group degree 
centrality, the more uneven is the degree centrality of the nodes in a network (Knoke & 
Yang, 2008). 

The above measure of group degree centrality can be extended to directed networks by 
considering the directions of the links. Group in-degree centrality (GIDC) and group out-
degree centrality (GODC) are defined as follows: 

     and     

where IDC(i) refers to in-degree centrality of node i in a directed network, ODC(i) refers to 
out-degree centrality of node i in the network, and IDC(N*)  and ODC(N*) respectively 
denote the largest in-degree centrality and out-degree centrality observed in the network. 
The denominator refers to the maximum possible sum of differences of in-degree or out-
degree centrality. Its value, however, is different from the maximum possible degree 
centrality for undirected network as defined in GDC. For directed graphs, the maximum 
out-degree centrality occurs when one particular node has an outgoing link to every other 
nodes but the other nodes do not have any outgoing links, giving the value of ( n– 1) – 0 = 
n – 1. This is repeated (n – 1) times, so the value of the denominator for GODC equals to 
(n – 1)(n – 1). The same value applies to GIDC. A higher GODC indicates more uneven 
influence among the nodes in a network, while a higher GIDC indicates greater inequality 
among the nodes’ popularity. 
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A student’s concept map is now used to illustrate the above definitions. In this study, 
the student manually constructed a concept map in Chinese. For ease of presentation, the 
concept map was translated into English and re-drawn using the software Cmap Tools 
(available at: http://cmap.ihmc.us), as shown in Figure 1. 

The concept triangle in Figure 1 was linked to 7 out of 10 concepts in the concept map: 
its out-degree centrality equals to 7.0. However, there were no links from the 7 concepts to 
triangle, so its in-degree centrality is 0.0.  

The concept equilateral triangle in Figure 1 had two incoming links and one outgoing 
link; hence, its in-degree centrality is 2.0 and its out-degree centrality is 1.0. 
 

 
 
 
 
 
 
 
 
 
  

Figure 1. A student-constructed concept map (re-drawn). 

The in-degree centrality and out-degree centralities for all the 11 concepts in Figure 1 
are given in Table 1. The result shows that triangle is the most influential node since it 
reaches most number of other nodes directly while the other nodes have very low ODC. 
The most popular node identified by IDC is scalene triangle since it receives the most 
number of incoming links from the other nodes, although the number (3) is still quite 
small. Furthermore, the low range of values in IDC shows that the difference of the nodes 
in popularity is relatively small. The concept angle is an isolated node in the concept map 
with zero centralities; it has no link with any of the other nodes.  

The total degree centrality in the last column is the total number of the incoming and 
outgoing links for each node. This score reflects the extent to which a node is connected 
within a concept map, ignoring the direction of the links. The result shows that triangle is 
well connected in the concept map in Figure 1 and scalene triangle and equilateral triangle 
are moderately connected. Acute-angled triangle, right-angled triangle, and obtuse-angled 
triangle have the same degree centralities; this suggests that these three types of triangles 
are of the same connectedness with the nodes in the concept map. The relatively low total 
degree centralities of the remaining five concepts indicate either that the concepts are 
mathematically less connected with the other concepts, or that the student was not familiar 
with the concepts. For example, isosceles triangle should have more or less the same 
number of links as scalene triangle and equilateral triangle since these three types of 
triangles are defined according to properties about sides, yet it has relatively low 
centralities compared to the other two types of triangle. Thus, this student may have an 
incomplete understanding of isosceles triangles.  

 



 236 

Table 1  
In-degree Centralities and Out-degree Centralities of Nodes in Figure 1 

Centrality Out-degree 
(ODC) 

In-degree 
(IDC) 

Total degree centrality  
(DC) 

Triangle 7.0 0.0 7.0 
Acute-angled Triangle 1.0 1.0 2.0 
Right-angled Triangle 1.0 1.0 2.0 
Obtuse-angled Triangle 1.0 1.0 2.0 
Scalene Triangle 0.0 3.0 3.0 
Isosceles Triangle 0.0 1.0 1.0 
Equilateral Triangle 1.0 2.0 3.0 
Symmetry Axis 1.0 0.0 1.0 
Angle 0.0 0.0 0.0 
Median 0.0 2.0 2.0 
Midline 0.0 1.0 1.0 
Group degree centrality: 0.650 0.210 0.589 

The group degree centralities in the last row cannot be interpreted in isolation. 
Nevertheless, the GODC value of 0.650 reflects the large variation in individual out-degree 
centralities of the nodes: 7 for triangle and 0 or 1 for the rest of the nodes. For this student, 
triangle is the sole central concept from which to link to the other concepts. This could 
arise because triangle was the first item of the given list of concepts or it is the most 
inclusive concept or the super-concept of the list. See further analysis later on. 

Findings: Centralities and Conceptual Understanding 
Centralities  

The above analysis of a single concept map is now extended to the whole group of 48 
students. The mean centralities of the whole group are given in Table 2. For ease of 
comparison, the list of concepts is sorted by the out-degree centralities, followed by the in-
degree centralities, instead of in the order the concepts appear in the given list.  

The degree centralities in Table 2 show that triangle has the highest out-degree centrality 
but the lowest in-degree centrality. This suggests that triangle is the most influential but 
also the least easily accessible concept (in terms of the direction of links) among the given 
set of concepts. The high out-degree centrality (6.98) and low in-degree centrality (0.08) 
together indicate that triangle is less dependent on the other concepts in the concept maps 
(Hannerman & Riffle, 2005).  

At the other end, the concepts symmetry axis, angle, median, and midline have very 
low out-degree centralities but average to high in-degree centralities. These four concepts 
are fairly popular as incoming links so they tend to appear at the end of a conceptual chain. 
They are not so influential in terms of outgoing links. The concepts acute-angled triangle, 
right-angled triangle, and obtuse-angled triangle have average in-degree and out-degree 
centralities, ranging from 1.10 to 1.92. These values suggest that the concepts are relatively 
popular with incoming links while at the same time are influential at an intermediate level. 
However, most of the incoming links to them are from triangle, while most of their 
outgoing links are to symmetry axis, angle, median, and midlines. Of these three concepts, 
right-angled triangle has the highest out-degree centrality. A possible reason is that, in 
addition to angle properties, right-angled triangle has other properties, which are not 
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shared by the other triangles, hence, increasing its out-degree centrality. For example, the 
median to the hypotenuse of a right-angled triangle equals to half the length of the 
hypotenuse, and this may have added more outgoing links to median. 
Table 2  
Mean Centralities of Concepts of 48 Student-constructed Concept Maps 

Centrality Out-degree 
(ODC) 

In-degree 
(IDC) 

Total degree centrality 
(DC) 

Triangle 6.98 0.08 7.06 
Equilateral Triangle 2.73 1.48 4.21 
Isosceles Triangle 2.04 2.19 4.23 
Right-angled Triangle 1.92 1.35 3.27 
Acute-angled Triangle 1.27 1.81 3.08 
Obtuse-angled Triangle 1.10 1.27 2.37 
Scalene Triangle 1.00 1.65 2.65 
Angle 0.27 2.81 3.08 
Median 0.21 1.48 1.69 
Midline 0.17 1.44 1.61 
Symmetry Axis 0.10 2.23 2.33 

Among the other three types of triangles, scalene triangle, isosceles triangle, and 
equilateral triangle, scalene triangle have the lowest out-degree centrality and isosceles 
triangle has the highest in-degree centrality. This suggests that these students had more 
knowledge about isosceles triangle and equilateral triangle than about scalene triangle, 
since the first two types of triangles have more special properties not shared by scalene 
triangle. For example, isosceles triangle and equilateral triangle have symmetry axis and 
equal angles, while these properties are not shared by scalene triangle. Thus, scalene 
triangle has fewer outgoing links.  

The above impressions can also be gained from a consideration of the group total-
degree centralities, which range from 1.61 (midline) to 7.06 (triangle), suggesting that the 
concepts are of different connectedness levels. Logically, triangle is the most inclusive of 
the given set of concepts. The six types of triangles are located at a medium level since 
they are less inclusive than triangle but more general than symmetry axis, median, and 
midline. There are differences among these types of triangles: the students had fewer links 
related to scalene triangle and obtuse-angled triangle, compared to the other four types of 
triangles, which are more common. The remaining three concepts, symmetry axis, median, 
and midline, are special properties of triangles, thus, residing at lower levels of 
“hierarchy”. Angle is also a generic concept, but its out-degree centrality is very low, 
suggesting that these students did not see how angle can lead to the other concepts, as 
illustrated by its isolation in Figure 1. The above degree centrality analysis is consistent 
with the attributes of the concepts based on logical considerations. This supports the use of 
this type of analysis for concept maps to probe student conceptual understanding at an 
individual level (Table 1) as well as group level (Table 2). 

Centralities and Mathematics Scores 
As shown above, each concept map can be characterised by two group degree 

centralities, GIDC and GODC. The following correlation analysis examines the relations 
between the degree centralities and the students’ school mathematics achievement.  
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Results from six school mathematics tests were collected. These six tests were two 
final mathematics tests of the two semesters in Grade 7, the mid-term mathematics test and 
the final mathematics test of the first semester in Grade 8, and the mid-term mathematics 
test and a monthly mathematics test within the data collection period in the second 
semester of Grade 8. These tests measured achievement in several topics such as equations 
and quadrilateral, but their correlations ranged from 0.926 to 0.950, all significant at the 
0.001 level (2-tailed). Thus, the average score of the six tests was taken as an indicator or 
proxy of the student’s School Mathematics Achievement (SMA).  

To address the fact that the six tests covered different topics, a specially designed 
conceptual understanding test (CU-test) on triangle was administered one day before the 
concept map task. This CU-test (triangle) was designed according to the first three levels 
of van Hiele’s theory of geometric understanding, i.e., visualisation, analysis, and 
abstraction. The items cover definitions and properties of triangles as well as their 
relationships. Unlike common school mathematics tests that are mainly about solving 
problems, the CU-test assesses conceptual understanding. As shown in Table 3, this CU-
test was also strongly related to SMA, indicating that both measure some underlying 
mathematics achievement. The results of the correlation analyses are shown in Table 3. 

Table 3. 
Correlation Coefficients between Degree Centralities and Mathematics Tests 

Centralities 
Group out-degree 
(GODC) 

Group in-
degree 
(GIDC) 

Group total-
degree 
(GDC) 

School math 
achievement 
(SMA) 

Group in-degree centrality (GIDC) 0.156    
Group total-degree centrality (GDC) 0.866**  0.629**   
School math achievement (SMA) 0.357* 0.470** 0.153**  
CU-test (triangle) 0.550** 0.340** 0.338** 0.815** 

* p < 0.05 and ** p < 0.001. 

No statistically significant relation was found between group out-degree centrality and 
group in-degree centrality. Thus, a concept that is “influential” in terms of its outgoing 
links to other concepts may or may not be “popular” in terms of its incoming links. The 
correlations between the in-degree and out-degree centralities and SMA and CU-test 
ranged from 0.340 to 0.550, which are significant at the 0.05 or 0.001 levels. Besides, the 
group total-degree centrality had higher correlation coefficients with CU-test (0.338, 
p=0.019) than with SMA (0.153, p=298). This shows that the degree centralities might 
relate more to students’ conceptual understanding than problem solving since CU-test 
emphasises conceptual understanding whereas the school mathematics tests were about 
problem solving. 

Conclusion 
This investigation supports the idea that degree centralities from SNA can be adopted 

for analysing concept maps. The degree centralities provide information about the 
connectedness of the individual concepts within concept maps, which is not easily detected 
with traditional methods such as scoring rubrics and anecdotal descriptions. The analysis 
can be readily completed through counting and simple calculations, and this ease of use 
will be an advantage to researchers and teachers who are contemplating using a concept 
map as an additional assessment tool. The concurrent validity of degree centralities for 
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assessing student conceptual understanding has also been demonstrated through correlation 
analysis between these attributes and mathematics achievement (in particular on CU-test) 
reported above.  

SNA has other techniques not discussed in this paper. Further research can also 
investigate concept maps using other SNA measures such as closeness centrality and 
betweenness centrality. These measures allow examination of the links in concept maps 
from multiple views to ensure a fuller understanding of concept maps as well as their 
relations with students’ conceptual understanding and mathematics achievement. 
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