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Curriculum documents in Australia are designed around outcomes and related standards. 
Teachers need to provide opportunities for students to learn the content that will allow them 
to meet the expectations defined in the curriculum. After undertaking professional learning 
sessions about the SOLO model, mathematics teachers in six high schools hypothesised 
developmental pathways for several key mathematical ideas. These theorised pathways 
were compared with Australian and State curriculum outcomes. The implications of using 
this approach for supporting teachers are discussed. 

The change in curriculum emphasis to focus on the outcomes of learning rather than inputs 
to schooling is part of a pressure and support approach to educational reform espoused by a 
number of governments over the past decade (Fullan, 2000). Outcomes-based curriculum 
approaches demand that teachers are more intentional in their work with the assessment of 
outcomes being integrated into teaching. Teaching and learning become inextricably linked 
and assessment is embedded within the teaching process (Pellegrino, Chudowsky & 
Glaser, 2001; Shepard, 2000). The integration of curriculum (what is taught), teaching 
(how it is taught), and assessment (what has been understood by the learner) is termed 
curriculum alignment (Biggs, 1996). 

Aligning curriculum objectives with teaching practice and assessment of outcomes is 
important, if schools are to achieve improved student learning. Unless, however, teachers 
make the necessary connections among students’ responses, students’ underlying 
conceptual understanding and the demands of the subject and the curriculum, they are 
unlikely to be able to use curriculum materials effectively (Manouchehri & Goodman, 
1998). Concerns such as these have led to a considerable research agenda around 
pedagogical content knowledge (Shulman, 1987), mathematical knowledge for teaching 
(Hill, Sleep, Lewis & Ball, 2007) and teachers’ mathematics content knowledge (e.g., Ma, 
1999). Consistently, the research literature suggests that teacher practices in classrooms are 
what contribute most to students’ outcomes (Ingvarson, Beavis, Bishop, Peck & Elsworth, 
2004). Curriculum outcomes, however, typically describe key ideas needed by students to 
progress, rather than the smaller building blocks used by teachers to plan their programs 
and provide targeted intervention for their students. Teachers are hence left with little 
curriculum support for their day-to-day work. 

From the early work of Piaget (e.g., Piaget & Inhelder, 1969) to more recent 
developments in the area of neuroscience (Goswami & Bryant, 2007), there is an 
acceptance that learning is gradual, building on prior experiences mediated through 
language. As Goswami and Bryant put it “Incremental experience is crucial for learning 
and knowledge construction” (p.20) and teachers must provide the necessary opportunities. 
To plan effective programs for their students, teachers need to recognise developmental 
pointers, and these may not be present in curriculum documents. In this situation, one 
solution is to consider general developmental frameworks that can be applied to students’ 
mathematics learning. 
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One such framework is provided by the SOLO model (Biggs & Collis, 1982, 1991). 
SOLO (Structure of the Observed Learning Outcome) is characterised by identifiable 
levels of response that are categorised by the complexity of the language used. These 
levels occur in cycles of Unistructural (U), where use is made of a single piece of 
information, Multistructural (M), where information is used in a stepwise process, and 
Relational (R) where information is synthesised into a coherent explanation or generalized 
to new situations. These cycles occur within modes of response: kinesthetic, iconic, 
concrete-symbolic and formal. Two U-M-R cycles have been identified in many situations, 
especially in the concrete-symbolic mode, which is the target mode for most school 
curricula (Pegg, 2003). 

In the study reported here, teachers were introduced to the two-cycle approach to 
SOLO (Callingham, Pegg & Wright, 2009). As part of the professional learning sessions, 
teachers of mathematics chose to theorise developmental U-M-R cycles for some common 
topics in mathematics as a way of helping themselves to understand students’ 
development. From this background, the research question reported in this paper is:  

To what extent do theorised developmental sequences used by teachers to identify 
students’ understanding match curriculum outcomes? 

Method 
Mathematics teachers in six NSW public high schools were involved in the study. All 

11 teachers were very experienced, with the average number of years of teaching being 
above 15. They chose to develop SOLO sequences for some common mathematics topics 
including percent, congruence and Pythagoras’ theorem as a way of understanding SOLO 
and also identifying students’ development. They used these theorised sequences to 
construct assessment and teaching tasks. Generally, the initial sequence was developed 
within one school to address a specific need within that school’s context. The SOLO 
sequence was then brought to the next project meeting, sometimes with some student work 
samples, and discussed with other project participants and the researchers. Hence the final 
hypothesized sequence was the result of collaboration among experienced teachers and 
researchers. Although not always fully validated due to time constraints in the project, 
teachers were happy to accept the SOLO U-M-R cycles as a guide for planning and 
assessment. 

These theorised U-M-R cycles were then compared with two curriculum documents. 
The first was the NSW syllabus for Years 7 – 10 (NSW Board of Studies, 2003), which 
was the curriculum used by the teachers in the project. The second was the new draft 
Australian Curriculum (AC) (Australian Curriculum Assessment and Reporting Authority 
(ACARA), 2010). The comparison identified the key ideas identified by teachers and 
located them in relation to the stage or grade of the curriculum document. Results are 
reported for two theorised sequences: percent and Pythagoras’ theorem. Both of these ideas 
are important in middle-years mathematics, and require good understanding of 
underpinning concepts before they can be successfully learned by students. 

Results 
The tracking of the hypothesised SOLO levels against the two curriculum documents 

for percent is shown in Table 1. 
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Table 1 
Comparison between SOLO Levels and Curriculum Documents 
Hypothesised SOLO level NSW Syllabus Australian Curriculum 
U1 
Knowing the symbol % and 
that it means 37 parts out of 
100 

NS2.4 (end Year 4) 
Students learn about: 
• recognising that the 

symbol % means 
‘percent’ 

No direct equivalent but implicit in M5NA3 
(Year 5) Content description 
Solve problems involving making comparisons 
using equivalent fractions and decimals and 
everyday uses of percentages, relating them to 
parts of 100 and hundredths. 

M1 
Understanding that 50% = ½ 
and 25% = ¼  

NS2.4 (end Year 4) 
Students learn about: 
• equating 10% to , 25% 

to  and 50% to  

M5NA3 (Year 5) Elaboration 
Representing decimal and percent equivalents of 
familiar fractions by using equipment, such as 
percentage strings, metre rulers, number lines, 
and 10 × 10 grids (e.g., counting 25 beads on a 
string of 100 to show 25⁄100 or 25% to 
demonstrate that this is one quarter of the beads, 
and that it can also be written as 0.25 or ¼). 

R1 
Finding 50% or 25% of very 
easy numbers (without formal 
procedures) e.g., 50% of $80 

Outcome NS3.4 (end Year 
6) 
Students learn about: 
• calculating simple 

percentages (10%, 20%, 
25%, 50%) of quantities. 

M5NA3 (Year 5) Elaboration 
Using equivalences with fractions to calculate 
50%, 25% and 10% of quantities (e.g., 
recognising that 25% of 80 is the same as ¼ of 80 
which is 20) 

U2 
Finding a % of an amount, 
(using %  100  amount) 
OR I lost 14% of my money, 
what % is left? 

No direct equivalent M7NA3 (Year 7) Elaboration 
Solving problems using fractions and 
percentages, such as those that require calculating 
fractions or percentages of quantities. 

M2  
Finding a discount by finding 
a % and deducting it. 
Increasing by a %. 
Solving a question like: Find 
the original price if after 25% 
off, you pay $84. 

NS4.3 (End Grade 8) 
Students learn about: 
• Increasing and decreasing 

a quantity by a given 
percentage 

• Expressing profit and/or 
loss as a percentage of 
cost price or selling price 

M8NA1 (Year 8) Elaboration 
Expressing profit and loss as a percentage of cost 
or selling price, comparing the difference, and 
investigating the methods used in retail stores to 
express discount; 
Applying the unitary method to solve real life 
problems involving ratios and percentages, 
including those where the whole is unknown 
(e.g., ‘after a discount of 15%, an MP3 player 
was worth $183. What was its value before the 
discount?’) 

R2 
Solving a problem like: If 
you increase 100kg by 10%, 
and then reduce by 10%, 
what do you have? 

No direct equivalent, similar 
to NS4.3 (End Year 8) 
Students learn about: 
• Interpreting and 

calculating percentages 
greater than 100%  

No direct equivalent 

Formal: Solve a question like: 
A leather handbag was 
discounted by $x and then sold 
for $y. Find the % discount in 
terms of x and y. 

No direct equivalent No direct equivalent 

The U, M, R refers to Unistructural, Multistructural and Relational and the subscript 
identifies whether it is located in the first or second U-M-R cycle in the concrete-symbolic 
mode. Statements from the two curriculum documents were selected where they best 
matched the SOLO description. In some instances these were part of the outcomes or key 
ideas (NSW), or the content description (AC); in others the activity statement “Students 
learn about …” (NSW) or Elaboration (AC) provided the best match. These latter two are 
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provided in the curriculum documents to exemplify the nature of the expectations for 
classroom practice, rather than being definitive teaching points. 

For the percent concept, the lower SOLO levels were identifiable in both curriculum 
documents, although the U1 level (recognising %) was implicit rather than explicit in the 
Australian curriculum. The development of the percent concept was similar in both the 
theorised SOLO sequence and the two curriculum documents and spanned the middle 
years of schooling. In NSW, however, the recognition of the percent symbol (U1) and 
understanding of familiar fractions as percents (M1) was expected by the end of Year 4 
whereas in the AC this occurred in Year 5. In contrast, calculation of familiar percents 
(R1), such as 25% and 10%, was also expected in Year 5 in the AC but not until the end of 
Year 6 in NSW. There was no explicit mention of percent in Year 6 in the AC but in Year 
7 students were expected to calculate simple percents beyond familiar fraction equivalents 
(U2). By the end of Year 8 in both NSW and AC, the expectations were similar of fluent 
use of percent for complex computations such as discounts, including inverse problems 
(M2). Two further SOLO levels were theorised, both more abstract in nature, neither of 
which had a direct equivalent in the curriculum documents. The R2 level hypothesised 
involved problems that changed the basis for the percent calculation and a further Formal 
mode level was entirely algebraic. 

The project teachers theorised the SOLO sequences in order to help them understand 
the development of the concept of percent. This detail was present in the curriculum 
documents but was often buried in the activity statements. The outcome statements (NSW) 
and content descriptions (AC) were too dense to be useful in identifying the small steps 
necessary for teachers to plan for development. In addition, some of the SOLO levels were 
compressed. The whole of the first cycle (U1 – M1 – R1), for example, was placed in Year 
5 in the AC, and the M2 and R2 levels were both expected by the end of Year 8 in NSW. 
The AC addressed a single grade in its statements in contrast to the NSW document, which 
described outcomes in two-year blocks, implying a two year period for the development of 
ideas. Experience from other studies suggests that students need time to consolidate lower 
levels of development and often making the shift from a Multistructural to a Relational 
level of thinking can be difficult (Pegg, 2003). The expectation for percent development in 
Year 5 in the AC may, on this basis, be unrealistic. 

A somewhat different picture emerges when Pythagoras’ theorem is considered. All of 
the theorised SOLO levels were expected by the end of Year 8 in NSW, and most were 
also located in Year 8 of the AC. Little explicit attention was given in either curriculum 
document to the development of essential underpinning ideas such as recognition of key 
parts of a right triangle (U1 and M1), although some of this is implied in the Year 5 content 
description “Make connections between different types of triangles and quadrilaterals 
using their features, including symmetry and explain reasoning” in the AC. The R1 SOLO 
level (recognising the Pythagorean relationship) is explicit for the end of Year 8 in the 
NSW activity statement but not in the AC Year 8 statements, where the emphasis is on 
using the relationship. 
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Table 2 
Comparison between SOLO levels and Curriculum Documents for Pythagoras’ Theorem 
SOLO NSW Syllabus Australian Curriculum 
U1 Recognise 
hypotenuse 

MS4.1 (End Year 8) 
Key Idea: Apply Pythagoras’ theorem 
Students learn about: 
• identifying the hypotenuse as the longest 

side in any right-angled triangle and also 
as the side opposite the right angle.  

Not mentioned 

M1. Identifies parts of 
the right-angled 
triangle 

 Implicit in M5MG1 (Year 5)  
Content Description 
Make connections between different 
types of triangles and quadrilaterals 
using their features, including symmetry 
and explain reasoning. 

R1  

 

 

 
 
 
 
Recognises m2 + n2 = 
r2 

MS4.1 (End Year 8) 
Key Idea: Apply Pythagoras’ theorem 
Students learn about: 
• establishing the relationship between the 

lengths of the sides of a right-angled 
triangle in practical ways, including the 
dissection of areas.  

M8MG7 (Year 8) 
Content Description: 
Use Pythagoras’ theorem to solve 
simple problems involving right-angled 
triangles. 
Elaboration: 
Using Pythagoras’ theorem in right-
angled triangles: a2 + b2 = c2, where a 
and b represent the lengths of the shorter 
sides and c represents the length of the 
hypotenuse. 

U2 Calculates 
hypotenuse length. 

MS4.1 (End Year 8) 
Key Idea: Apply Pythagoras’ theorem 
Students learn about: 
• using Pythagoras’ theorem to find the 

length of sides in right-angled triangles  

M8MG7 (Grade 8) 
Elaboration: 
Solving problems involving the 
calculation of unknown lengths in right-
angled triangles  

M2 Calculates short 
side or identifying 
triad.  

MS4.1 (End Year 8) 
Key Idea: Apply Pythagoras’ theorem 
Students learn about: 
• identifying a Pythagorean triad as a set of 

three numbers such that the sum of the 
squares of the first two equals the square 
of the third.  

M8MG7 (Grade 8) 
Elaboration: 
Solving problems involving the 
calculation of unknown lengths in right-
angled triangles  

R2 Decision making 
and Reversibility  
e.g.,  
 
 
 
 
 
Find x. 

MS4.1 (End Year 8) 
Key Idea: Apply Pythagoras’ theorem 
Students learn about: 
• solving problems involving Pythagoras’ 

theorem, giving an exact answer as a surd 
(e.g., ) and approximating the answer 
using an approximation of the square root 

• using the converse of Pythagoras’ theorem 
to establish whether a triangle has a right 
angle. 

M8MG7 (Grade 8) 
Elaboration: 
Applying understanding of Pythagoras’ 
theorem to determine if a triangle is 
right angled 

Formal. Using 
Pythagoras, single part 
of a 3-D object, 
Bearings etc. 

SGS5.3.1 Deductive geometry 
• proving Pythagoras’ theorem and applying 

it in geometric contexts 
• applying the converse of Pythagoras’ 

theorem 
 

M9MG2 (Grade 9) Content Description: 
Solve problems involving right angled 
triangles using Pythagoras’ theorem … 
and justify reasoning 

Discussion 
A number of issues are raised by the mapping exercise described in the last section. 

The SOLO pathways were theorised by a group of experienced teachers, and were not 
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formally validated. Nevertheless, the hierarchies were accepted as reasonable 
representations of the development of the notions of percent and Pythagoras’ theorem. The 
same kinds of understandings were evident in the curriculum documents as well, 
suggesting that the nature of the knowledge that students need to develop is widely agreed 
upon. 

A major difference, however, was in the developmental aspect, particularly over a 
period of time. The concept of percent in the curriculum documents did have some sense of 
growth across time, with the earliest notions located in the later years of primary school, 
and the more complex ideas situated in the lower secondary years. Some aspects of 
percent, however, which were identified as having different levels of complexity in the 
SOLO sequence, appeared within a single grade in the curriculum documents. For 
example, the M1 (Understanding that 50% = ½ and 25% = ¼) and the R1 (Finding 50% or 
25% of very easy numbers) SOLO levels both appeared in Year 5 Elaborations in the 
Australian Curriculum. The first of these elaborations is explicit about the use of concrete 
materials such as using percentage strings or 10x10 grids and is like the M1 SOLO level, 
but the second is considerably more abstract in expecting the use of fraction equivalents, 
similar to the theorised R1 SOLO level. This finding would suggest that the first 
elaboration might be better addressed earlier in Year 5 and the more abstract idea revisited 
later in the year but the curriculum document does not provide any indication of 
sequencing within a particular year level. In the NSW syllabus document, the M1 SOLO 
level appeared at Stage 2, that is at the end of Year 4 and the R1 level was identified in 
Stage 3, the end of Year 6. The two-year time frame suggests that the curriculum allows 
for growth over time, and implicitly acknowledges students’ developmental needs. 

The situation in the curriculum documents with respect to Pythagoras’ theorem is less 
developmental. There appears to be little consideration in the Australian Curriculum to 
building an understanding of the Pythagorean relationship before using it to solve 
problems, although the expectation of concrete approaches to proving the relationship is 
explicit in the NSW document. Understanding Pythagoras’ theorem, however, is largely 
restricted to the Year 8 level in both documents, and includes most of the hypothesised 
SOLO levels. 

Neither SOLO nor the curriculum documents provide any clear indication of the rate of 
learning; that is whether it is reasonable to expect students to progress through a number of 
developmental levels within a short time frame. SOLO, however, does provide some 
support for teachers in terms of sequencing activities, which is not evident in curriculum 
documents. One aspect of SOLO that the project teachers particularly appreciated was that 
it allowed them to understand how a concept developed, so that if students were struggling 
with an idea the teacher could move back to an earlier notion in a structured and informed 
manner. For example, one teacher stated 

It’s [SOLO] sort of made me understand about that really basic level, and unless they know that, 
and feel comfortable with it, and understand it, they can’t start linking everything together. 

In addition, SOLO provided the teachers involved with approaches that informed their 
teaching and made it more intentional. They were able to use the complexity of students’ 
responses to identify whether they were ready for the next stage of development, and were 
mindful of the need to move students through the developmental levels identified, for 
example: 

I’m progressing through it and seeing that the kids are at a certain level, and saying to them…and 
thinking to myself, at school and at home, how can I get them to a higher level? 
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SOLO also had an impact on other aspects of teaching, in particular the nature of the 
questions posed to students. The teachers in the project reported that they were no longer 
satisfied with questions that allowed students to demonstrate only particular skills. Instead 
they were deliberately posing questions that required explanations or demonstrations of 
understanding. For the two concepts considered here, percent and Pythagoras’ theorem, 
there is almost no indication of students explaining their thinking in the curriculum 
documents. For example, students are expected to represent percents using concrete 
materials but not to explain why that representation is suitable. Hence, students could 
manipulate the materials successfully with apparent expert behaviour but without deep 
understanding of the concept. 

It should be acknowledged that the curriculum documents do not purport to advise 
teachers on how to teach, only on what to teach. Without some acknowledgement of 
students’ mathematical development and corresponding approaches to teaching, however, 
the curriculum documents become somewhat sterile. The NSW mathematics syllabus is 
explicit in having a developmental focus and having flexibility for students to achieve the 
standards at different times and in different ways. The NSW syllabus states “Syllabus 
outcomes in mathematics contribute to a developmental sequence in which students are 
challenged to acquire new knowledge, skills and understanding” (NSW BoS, 2003, p.147). 
In contrast, the Australian Curriculum has an explicit focus on increasing difficulty of the 
mathematics rather than student-focussed developmental pathways: 

The Australian mathematics curriculum focuses on developing increasingly sophisticated and 
refined mathematical understanding, fluency, logical reasoning, analytical thought processes and 
problem-solving skills… (ACARA, 2010, p. 1). 

Despite considerable emphasis on equity considerations in the earlier Mathematics 
Framing Paper (National Curriculum Board, 2009), in which principles for the writing of 
the Australian Curriculum were established and which acknowledged “the markedly 
different rates at which students develop” (p.17), the focus on developmental aspects of 
students’ learning of mathematics is limited in the draft AC. It may be that the added 
flexibility of having two-year stages for which outcomes are described in the NSW 
Syllabus provides a stronger developmental framework than the year level expectations of 
the Australian Curriculum. Neither document, however, appears to set out to map a 
specific developmental pathway that provides sequencing information for teachers’ day-to-
day work. In this void, SOLO can provide a theoretical perspective to support teachers’ 
decisions about their students’ learning by identifying the small steps needed for students 
to progress. 

Conclusion 
Mapping current curriculum documents against theorised learning sequences provided 

some insights into the structure and nature of the mathematics curriculum. Although the 
kinds of understandings that students demonstrate as they develop mathematical concepts 
are, in general, well documented in formal curriculum documents, there is little indication 
of the sequence of development of such understanding. Teachers, using the SOLO model 
(Biggs & Collis, 1982, 1991), were able to theorise levels of mathematical development 
that allowed them to plan appropriate learning activities that met their students’ learning 
needs. With the focus on learning outcomes that is apparent in modern mathematics 
curricula, some support to teachers in the form of a developmental model, such as SOLO, 
would seem to be helpful for the routine work of teaching. 
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