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Investigating students’ conceptions of covariatipatterns between quantities situated
within contextual settings engenders enriched, degplerstandings of functional
relationships. This paper presents data from a sasly of a student (Mary) who solved
guadratic contextual problems. Mary's schemes, tcocted from quadratically related
guantities and patterns of additive rates, fosténedlevelopment of an iterative, summative
conceptualisation of quadratics in contrast togreduct view. Findings support the use of
contextual problems to motivate students to theflectively and mathematically.

As educators we are perpetually concerned withrohéténg and developing better
ways of presenting mathematics to students to ptemeeper conceptual understandings.
The constructivist's perspective encourages edusaim focus on and listen to what
students have to say and do when solving problerasious Curriculum Standards
(NCTM, 1989, 2000; NSW, 2002) exhort that studesmplore patterns and functional
relationships in realistic situations and commutadaeir mathematical understanding and
models effectively using multiple representationisis paper focuses on Mary's strategies
in solving a maximum quadrateontextualproblem in terms of hanterpretationsof the
situation, actions taken to resolve her problemdiie., conceptual obstacles) and multiple
representationsWhilst struggling with competing interpretationsdarepresentations, she
developed potentially useful schemes reflectivelysteacted from explorations of
numerical patterns of tabular data. The theoretiGahework and methodology of the
overall study in which Mary was one of four parients is briefly outlined followed by the
data, a brief discussion and some conclusions basddary’s first two sessions.

Theoretical Framework

The theoretical framework is based on Piaget'stemislogy in which learners actively
organize their experiences by constructieemeso assimilate and/or accommodate new
knowledge. Constructivists view mathematics asradmncreation that historically evolves
within cultural contexts through social interacsonreflection, communication and
negotiation of meanings. Humans construct mathealatoncepts to structure experience
and to solve problems. (Confrey, 1991a, 1991b, 199dnfrey & Doerr, 1996).
Accordingly, mathematics can be created as a redufitudents’ actions in situations.
Through reflective abstraction on their actions.(abstraction of the relationship between
actions and effects of those actions), studentstoaet schemes, modify and/or apply them
intentionally to achieve their goals. (Confrey, 49€onfrey & Smith, 1994; Steffe, 1994;
Hershkowitz, Schwarz & Dreyfus, 2001). When solvippblems, students begin by
identifying their problematics, acting on them aheén reflecting on the results of those
actions to create operations, followed by checksl@étermine whether problematics are
resolved satisfactorily. The cyclic activitiggtoblematic- actions- reflections,therefore

Y This study was part of the author’s doctoral disd®n supervised by Dr Jere Confrey at Cornell
University. Some data reported here formed parh giresentation at the Multiliteracies and K-12 kgl
Teaching Conference held at UNE on November 264 260llustrate the importance of critical literasiin
mathematics.
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consists of an anticipation, action and reflectibproven successful, it is repeated in other
circumstances to create a “scheme,” a more autahratgponse to a situation (Confrey,
1991b, p. 120). Over time, these schemes emergedssimilations of experience to ways
of knowing, have duration and repetition, and a@raneasily examinable than isolated
actions (Confrey, 1994, p. 320). Assimilating arjecb into a scheme simultaneously
satisfies a need and confers on an action a cegrstructure (Thompson, 1994, p. 182).
Tasks are selected for their potential to invitel amotivate students to engage with the
mathematical idea and should yield to multiple riptetations and resulting approaches
(Confrey, 1991a, 1994; Confrey & Doerr, 1996), henice use otontextual problems
(problems with realisticcontexty. Multiliteracies in mathematics include the resyi@
critical skills to interpret the mathematics embediéh various representations such as the
numerical, symbolic, algebraic, and graphical. Bgjvcontextual problems therefore
effectively demands that students have the meltdity skills to decode the question in
order to respond appropriately and ability to caliy appraise the problem context so that
relevant, embedded mathematical tasks are ideh{iievenbergen, Dole & Wright, 2004)
as well as shift flexibly between different repmaseions. By listening to students, we learn
from them; our mathematics understandings are efigdld and enriched as a result of it.
Hence, analyzing student data can prompt ris@xamination and extensioof one’s
mathematical understanding to new territories ofth@aatical meanings (Confrey &
Smith, 1994, p. 136).

Functions play a central and unifying role in sdhomthematics (Confrey, 1991a;
Romberg, Carpenter, & Fennema, 1993, NCTM, 198QtKn2000). The2000 NCTM
Standardsrecommend that students must learn mathematics umitlerstanding, actively
building new knowledge from experience and prioowledge, and consider the study of
patterns and functions as one of its central themks literature orfunctionsdescribes
two views. Thecorrespondence views more consistent with the modern set-theoretic
formal definition associated with Dirichlet-Bourbakand the covariational view is
reflective of the historical development of funcoand consistent with Euler’s classical
view (Smith & Confrey, 1994, p. 335). Prevalent sthool mathematics is the
correspondence view. Students primarily work witebraic forms (analytic expressions)
of functions as correspondence rules. Their unaedstg is predominantly built from
using these algebraic expressions as algorithmicepiures that take inputs to generate
corresponding output values (Confrey & Smith, 1984nith & Confrey, 1994; Knuth,
2000). In contrast, a more intuitive approach & ¢bvariation view. Students observe and
reflect upon covarying patterns with quantitiestabular form; describe patterns in one
column in relation to values in another and comstrates of changem terms of repeated
action in each column (Confrey & Doerr, 1996; Sm&thConfrey, 1994). Coordinating
multiple representations and reflecting upon thadtions, students construct viable
schemes thus engendering a more natural view @bedgc symbolism as the need to
codify actions and operations that one takes tordesvariations of quantities, rather than
an abstract, symbolic system devoid of contextugirtss (Confrey & Smith, 1994; Smith
& Confrey, 1994). It also gives students ownersifithe mathematics they construct.

The literature presents multiple perspectives tesraf change and the related concept
of ratio (see Thompson, 1994). The most relevanttorthis paper is that by Confrey and
Smith (1994) whose situational view is similar teh8, Lesh, Post and Silver (1983) and
others. However, Confrey and Smith expand it furthg proposing a more grounded
approach to “rate” that emphasizes and values Qaotntities that are being compared
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(numeratorand denominator), and indicates the kinds of menttbas that are applied to
the quantities. For exampletio is defined as the “invariance across a set ofvedgmt
proportions” whilerate is defined asd unit per unit comparison’Conceptualising rate as
an intentional, coordinated and repeated actiowdmt two quantities recognises that rate
can be constant (additively or multiplicatively) warying whilst ratio remains constant.
This view “allows one to explain uniformity of uri unit comparisons (homogeneity) and
the variation in rates over time (non-homogeneif@bdnfrey & Smith, 1994, p. 153-154).
The case study reported here investigated in-diygtldevelopment of students’ schemes
constructed from representations and abstractibnsroerical patterns of additive rates of
change to model quadratic contextual situations ffamasaga-Fuata’i, 1991 for details).
Additive rates follow an arithmetic progression Isuas those for polynomials whilst
multiplicative rates are geometric progressionhagwith rates of exponential functions.

Methodology

The research methodology was a constructivist tegobxperiment (Cobb, Confrey,
diSessa, Lehrer, & Schauble, 2003; Duit & ConfrE§96; Steffe & D'Ambrosio, 1996;
Duit, Treagust, & Mansfield, 1996). It was set dat model students’ developmental
understandings of mathematical concepts. The imslus realistic contexts was deliberate
to provide critical sites for students’ mathematigiactivities (Confrey, 1994, 1991a;
NCTM, 1989) and to foster the construction of ga#idr schemes. Students were
encouraged to use Function Préb@P) (Confrey, 1991c), a multiple representational
software, to support their activities when makiognfirming and revising conjectures. Of
particular importance was FP’s use to automatiagdiyerate table values (i.e. x,Ax, or
Ay) with the input of an equation to fill columns, manually one by one where the symbol
A denotes differences between consecutive valudscidinal interviews were interactive
and centred around a set of problems. The reseanchdd ask probing questions to gain
insights into a student's constructions, interpi@ta and reasoning processes (Cobb et al,
2003; Confrey, 1994; Duit & Confrey, 1996; Confr&yDoerr, 1996; Thompson, 1994)
whilst simultaneously promoting more self-refleaticand a stronger approach to
knowledge construction for the student (Confrey91#. The nature of probing questions
depends on student responses, need for clarifisatamd justifications, and/or potential
pathways that arise which promise greater insigho ipowerful ways of thinking
(Thompson, 1994, p.195). It is acknowledged thanmanicating one's rationale and
reasoning processes to another simultaneously shapeé transforms one's reflective
thinking and schemes of internalised actions (Gonfi994, p. 321). All problem-solving
sessions were videotaped; sessions were approiynate-hours each, and held three-
times weekly for at least 6-weeks. Resources adailancluded pen-and-paper and the
software FP. A pre-test was conducted to seleat $tudents who demonstrated a solid
understanding of linear functions. Mary was an Aggr, second year university arts
student at the time of the study with a high schgeieral mathematics background. Data
collected included students’ worksheets and FR,filesearcher’s notes, and transcripts of
each session. The starting point is the familgaran tutorial where students learn to use
FP whilst solving a linear contextual problem. Theyestigate distances of® posts from
a house with a gate of width 4-feet attached tmibone side while the opposite side has the
first post (n = 1) with other posts spaced 3-fgetra(to be referenced the gate-problem).
The distance-equation d = 3(n — 1) + 4 is givesttalents.
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Data and Analysis

Mary's cycles of activities are described below ske developed a robust
conceptualisation consistent with her preferredrprietation. To distinguish between the
researcher’s interpretations of Mary’s actionsri@mmal font) and Mary’'s own words and
symbols, the latter will b&talicised” and enclosed in quotes.

Multiple Interpretations and Representations
The first contextual problem is as shown:

Farmer Joe has records showing that if 25 avocegks tare planted, then each tree yields 500
avocadoes (on the average). For each additiomalpiented, the yield decreases by 10 avocadoes
per tree. Determine the number of trees that wmasimize total yield.

Mary began by proposing various literal interprietas and multiple representations.
Her initial conceptualization as the sum gfeld from 25 trees + yield from additional
trees was represented agotal yield = 500 + yield from additional treesapparently
conceived to be structurally similar to the distsequation. It was also inconsistent with
the phraseach tree yields 500 avocadoes (on the aveiggthe problem statement. In responding
to probes, Mary referred to her linear schemeshithvshe connected the: (ajumber 3 in
front of the (n - 1) terfhof the distance-equation to the tabulaofistant differenced =
3)” of the FP column and contextual condition 8fféet equal spacirigand (b) ‘constant
4" to the contextual condition offixed gate-width of 4-feétMary explained: 'm trying
to relate this (new problem) ... I'm trying to findnse kind of relationship so that it's
easier because | understand this (gate-problem)’s.the same thing ... because ... we
have a starting point”. Whilst critically conceptualising total yield, Marwas
simultaneously cognizant of two things; that theoants of 500 and 25 gave amitial
amount of 12500”and her first conceptualisation requires modifaratto accurately
represent her interpretatiométreasing consecutive total yields, but with défees that
are decreasing by 10 such as from 490 to 480 td.430bsequently, the revision became
“500(n + 25) — 10(n + 25) = total yield'where ‘h” is additional treesHowever,
numerical evaluations showeddnstant differences of 4900t the expectedsequence of
490, 480, 470".Modifying once again her expression t600(n + 25) — 10(n) = total
yield” produced total yields$12500, 12990, 13480, 13970hot the expected values
“12500, 12990, 13470, 139401In terms of Thompson’'s (1994) distinction between
quantitative and numerical operations (p. 184-188yy quantitatively conceived total
yield as the sum of two quantities, an initial amioand yields from additional trees,
perhaps structurally similar to the distance-equmtbut has yet to fully conceptualise the
required numerical operations to construct the gaantity ‘yield from additional tre€'s
After much systematic modification and evaluatidary verbally re-affirmed the salient
initial conditions and re-presented them on herksfoeet as shown in Figure 1a.

Strategically, Mary was recapitulating, reassessamgl reflectively thinking through
her actions and multiple representations thus fasslze contemplated a way forward.
Whilst setting out her expected values in tabubamf (see Figure 1b), Mary experienced a
significant moment of insight (Barnes, 2000) — thenstant difference of 1@vas similar
to the ‘tonstant difference pattern of 8 the gate-problem. This immediately signalled
the opportunity to apply her linear schemes. Heraféger experimenting with, and
evaluating various expressions, Mary derived th@ession (500 - 10n)” labelled“fruits
gained” to illustrate the Starting average yield of 508nd decreasing yield of 10%5ee

68



Figure 1c. For verification, Mary generated= 500 — 10i values as shown in Figure 1d
where {” representedyield per added tree

Fruits Gained = 500 —_ 10
1. 25 trees = 500 _
fruits/tree Distanced = 3(n-1) + 4
(a)
Yield of difference
add|t|0nal trees additionsl trees yrsld per added
25 500 tree
1.00 450.00
! 2.00 480.00| ::g'gg
26 490 soo el Ciow
10 5.00 as0.00] 1090
(b) (d)

Figure 1 Mary’s multiple representations of yield per atdial tree.

Returning to her earlier total-yield problematice £xplained: Fm trying to think of a
way to ... create a column in which ... it will show #ttccumulation ... the cumulative ...
including the 25 Acknowledging the inadequacy o025 x 500) + (500 — 10n)to
account for tumulative total§ she declared she wanted sufmmation of 500 — 10ro
represent artinning total from all additional trees and a formula for hgveoational
scheme of iteratively adding new yield to previcigal yield as illustrated by her
procedural actions of12500, 12500 + 490 =12990, 12990 + 480 =13470, 13470 + 470
= 13940" . Mary represented this a3 dtal Yield = 12500 +Y (500 — 10n) where
signified her tumulative running totalof (500 — 10n) values. While thinking aloud, Mary
generated t values by typing into FP formtila 12500 + (500 — 10n)”and “4t” values
using theA-menu command. A comparison of generated t valodshandwritten ones on
her worksheet (the latter are shown as columngda\ann Figure 2a) showed a mismatch
of At andAa values. After further unsuccessful experimentatshe used the lettet’‘to
represent Total yield” and ‘S’ for cumulative yields 3 (500 — 10n) and subdivided
equation Total Yield = 12500 +) (500 — 10n) in two parts as shown in Figure 2b. Her
ensuing dialectic among reflectively abstractingatéees of various algebraic
representations (for s such &= n*y = n*(500-10n); “s = ny + 10ri and “s = ny — 10M)
and tabular data (columng™and “s’ in Figure 2c) was mediated by numeric evaluations
of differences as shown in colume = b — $; ¢ values quantitatively represented the
increasing shortfall of equatiors ‘= n(500 — 10)to match expectedb values. Mary
used the symbol*” to reinforce her strong belief that quantity ssnbe ‘h times another
guantity’ which was yet to be fully developed.

To encourage an alternative approach, the internesked: “Assuming that all trees
were affected by the addition of new trees, how laidbat change your formula for total
yield?” The response was immediafEotal Yield ¢ = (n + 25)(500 - 10n)Wwhere t’
represented the other interpretation. However,wlais dismissed temporarily as it was not
her preferred interpretation. Notwithstanding thdary re-considered, then argued that
choosing equation ¢ means quantitativatyvalues are less than expected t vdlusse
Figure 2d. lllustrating further for n = 24t = 480 compared talc = 220’; she pointed out

69



“Ac was not accounting for 260 of the fruité§ile. “ 4t - A4c = 260”. Extending her
plausible reasoning (Lithner, 2000) forward from @v= 2) to 28 (n = 3) trees, and
backward to 25 (n = 0) and 26 (n = 1) trees, Manyigmeric analysis confirmed
“unaccounted for fruits(q = At - Ac) were increasing by a6nstant difference of 10 from
250 each time a tree was adde@olumns n, g andq in Figure 2d). Subsequently, she
conjectured thatt“= ¢ + Yunaccounted for fruits Evidently, Mary attempted to: (i)
develop an algebraic bridge between equatiorns (h + 25)(500 — 10rf)and “t = 12500 +
(500 — 10n), and (ii) explore the potential value afy (Aq = A(k — p) =A(At - Ac)).
However, Mary finished off the first session haviagtablished thatuhaccounted for
fruits” were increasing by 10, but had yet to algebraiagaipresent it.

[[EBE=—————————— lable =—"—+ _
= - ; . t = 12500 + s
n y=500-10n t at a aa
additional — —
100 490.00(12990.00), 4 ggf 1299000}, 40 g first part second part
2.00 480.00| 12980.00 13470.00 .
> -10.00 > 470.00 .
300  470.00[12970.00] _ 00| 13940.00) ,o'oo Yield from:
4.00 460.00[12960.00[ ' nnl 14400.00 ’ 25 initial additional
t has equation t = 12500 + (500 -10n)
a is expected total yields with cumulative total for y trees trees
[] []
‘ e ! 1 (] | 1 n t k=at ° p=ac | q=k-p 2q
| n y=500-10n b 3=n(500-10n) c=b-3s ledditional [Expected total [fifference | Expected |Difference| Mary's |[difference
oo x: = = trees yields between [totalyields | between |unaccount| between
| Additional Yield per Expected Predicted Difference accordingto | total ifall total edfor |unsccounte
| trees added tree |cumulstive yields | cumulative yields | between Mary's yields |treeshed | yields | fruits d for
| from additional from additional | Expected & preferred the same fruits
trees trees Predicted i nterpretation iy
3 yie
cumulative
oo T con B0 sl oo 1000
! > 480.00 > 220.00 > 10.00|
1.00 490.00 450.00 490.00] 0.00 2000 13470.00[ 0" 112960.001 -0 0ol 270.00 40,
2.00 480.00 970.00 960.00 10.00 3.000  13940.00( ' 13160.000 T oo’ ol 280.001 o0
3.00 470.00 1440.00 1410.00 30.00 4.00/  14400.00 450’00 13340.00] o0 oo 290.00 ’
4.00 460.00 1900.00 1840.00 60.00 S0l 1485000 13500.00 )

Figure 2 Multiple representations of total yields

In the subsequent session, Mary finalized her pné&tation and algebraic
representation to bebecause’it will make sense ... the more trees you planthe. less
nutrients there are in the ground ... and the lesgdrproduced by the tree’She further
recognized that the ¢ was much easier to work ti#im t becausécoming up with the
cumulative formula is easierDetermining maximum total yield (of 14060 at both &d
38 trees) was a matter of extending FP generatieg@saMost importantly overall, Mary
made significant progress in algebraically and micadly representing her preferred
interpretationt in terms of: (a) an initial amount and summatior=“12500 + (500 —
10n) (b) a known function and summation= c + > unaccounted for fruits”’and (c) an
iterative and summative operational scheBige also identified twad-variation patterns;
those that are constadd in gate-problemit in Figure 2a, andq in Figure 2d) and those
that vary Qa in Figure 2a, k At and p =Ac in Figure 2d). Her linear schemes were
successfully applied in deriving yield per tre®00 — 10n). Mary repeatedly used the
expression tinaccounted for fruitsas a label to refer to the quantityit — Ac” (q in Figure
2d) to argue for her preferred interpretation ard surprised thadifferences o#it — Ac”
(i.e. Ag) were constant.
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Conclusions and Recommendations

Conclusions from Mary’'s first two sessions on th@cado problem are organized
around three main themes: iterative conceptioruafigatics, unit comparisons of rates and
construction of schemedterative Conception of Quadratics Mary’'s concept of
“unaccounted for fruits prompted a post-interview re-conceptualisation qufadratics
primarily to unpack the product view iterativelp. ¢ontrast to Mary’s initial interpretation
of perceiving loss only from the latest additiotrak, the product viewc" interpreted loss
to be from all trees. This was the main conceptliierence Mary tried to reconcile
algebraically, procedurally and quantitatively e tt= c bridge equatianiteratively, c is
“Total Yield = Previous yield + Yield from new treeLoss from new tree — Loss of 10
more per old tree”, and generalized algebraicalg & 12500 (500 — 10n) > 10((n +
25) — 1). Clearly, thednaccounted for fruitsMary was seeking algebraically is another
summation) 10((n + 25) — 1) Conceptually and practically, it represents th&rttiuted
loss of 10 more per tree from old trees as a resiuthe latest additional tree. Most
probably, with more time in the first session, Mawpuld have derived the algebraic
expression (10(n + 25) - 1) by applying her linselnemes to the sequence 250, 260, 270,
.... But beyond that, Mary would be faced yet agaitihanother summation problematic.
In spite of it, her initial preferred iterative asdmmative view of quadratics provided a
viable contrast to the product viewlnit Comparisons of Rates Mary’s struggles to
develop appropriate formulas to represent prefamtpretations continuously led her to
explicitly examine rates of changes as unit pert aomparisons. By applying linear
schemes premised on constant additive rates ofyehamd initial amounts, she constructed
the expression (500 - 10n). The quantity tnaccounted for fruits was mediated
meaningfully by numeric analyses of total yield ued (t=c) and rates of changes
(At Ac- Aqg) whereAt andAc exemplified varying additive rates of changesdndoing,
she spontaneously encountered differences of diftaas Ag = A(At - Ac) typically
constant for quadratics), mainly to depict quahtiedy and contextually the shortfall
between the product and summative vie@snstruction of Scheme®Repeated iterations
of the cyclic activities: problematicsactions- reflection whilst coordinating her dialectics
between interpretations multiple representationsand context and simultaneously
interacting with the researcher fostered the cotatbn of Mary's linear schemes,
enhanced the consistency and convergence of héiplaukepresentations, engineered the
development of tentative quadratic schemes, andndertd her reflectively abstracting
experiences beyond constant additive rates to decltarying ones. Finally, the realistic
context invited alternative interpretations and esrdgered an enriched view of quadratic
covariations. Their construction was meaningfullgdiated by reflectively abstracting
patterns from numeric analyses of tabular formsrates and facilitated by using
appropriate software. These findings provide erogirievidence of how students’
developing understanding and construction of quadraodelling functions (algebraic
representations) of situations are initially lademh competing interpretations and
conflicting representations but with appropriatehteological and teacher support could be
scaffolded and guided towards a more convergentcamesive conceptualisation. This
nurturing approach and incorporation of contextpabblems into regular classroom
activities in schools should be encouraged to fosteiched, conceptual development of
key ideas of functions such as rates, to enhancdtilitatacies with multiple
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representations, and to promote reflective and ema#ttical thinking and discussion in
classrooms.
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