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This study uses number sentences involving two unknown numbers to identify some key junctures 
between relational thinking on number sentences and an ability to deal with sentences involving 
literal symbols. In this paper, the focus is on how students were able to make generalisations on 
sentences involving two unknown numbers, and how these influenced their performance on sentences 
involving literal symbols. In so doing, it aims to identify some key linkages as students make a 
transition from arithmetic to algebra. 

Rationale for the Study 
In its report Algebra: Gateway to a Technological Future, The Mathematical 

Association of America (2007) argues that “we need a much fuller picture of the essential 
early algebra ideas, how these ideas are connected to the existing curriculum, how they 
develop in children’s thinking, how to scaffold this development, and what are the critical 
junctures of this development” (p.2). This study, along with Stephens and Wang (2008), is 
about exploring some of those junctures, connections or linkages in relation to two kinds of 
mathematical sentences. The first type of sentence involves numbers and boxes either side 
of the equal sign, such as 18 + (Box A) = 20 + (Box B). A second type of sentence is 
structurally similar but uses unknowns, such as c + 2 = d +10. Sentences of both types are 
used involving all four operations where the preceding two sentences exemplify addition. 

Earlier research, such as carried out by Irwin and Britt (2005) focussed on Year 8 
students’ capacity to transform number sentences such as 47 + 25 into 50 + 22 by adding 3 
to 47 and subtracting 3 from 25. Irwin and Britt examined the performances of nearly 900 
12-year-old students in two schools which had participated in the New Zealand Numeracy 
Project and in two schools which had not. They argued that the methods of compensating 
and equivalence that some students use in transforming and solving number sentences, 
such as the one above, may provide a foundation for algebraic thinking (p. 169). They 
claimed that, when students apply strategies such as equivalence and compensation to 
sensibly solve different numerical problems, they disclose an understanding of the 
relationships of the numbers and operations involved; and “(t)hey show, without recourse 
to literal symbols, that the strategy is generalisable” (p. 171). Other authors, including 
Stephens (2007) and Carpenter and Franke (2001), refer to the thinking underpinning this 
kind of strategy as relational thinking. In all 21 questions used in the study by Irwin and 
Britt, students were required to demonstrate conceptual understanding of (relevant) 
relational strategies applied to six different sets of number sentences (p.174). 

The direction of compensation that is appropriate for the operation of addition, for 
example, is inappropriate for subtraction (Kieran, 1981; Irwin & Britt, 2005). Some 
children who can successfully transform number sentences involving addition reason 
incorrectly, for example, that a number sentence such as 87 – 48 is equivalent to 90 – 45. 
Other children, however, use expressions such as, “in order for the difference to remain the 
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same, the same number has to be added to each number in the expression to keep it 
equivalent (thus, 87 – 48 should be transformed to become 89 – 50)”. 

In order to examine students’ capacity to use relational thinking across all four 
operations, and to investigate how they used key ideas of equivalence and compensation, 
studies by Stephens, Isoda, Inprasitha (2007) and Stephens (2007, 2008) had used number 
sentences involving four operations, where students were asked to find the value of a 
single missing number and to explain their thinking in sentences such as the following: 

43 +  = 48 + 76,  39 – 15 = 41 – ,  × 5 = 20 × 15, 21 ÷ 56 =  ÷ 8 
Some students demonstrated clearly relational strategies – either giving coherent verbal 
explanations showing how they had used equivalence and compensation or by using 
devices such as directed arrows – consistently across the range of sentences and operations. 
Others used computational methods clearly distinguishable from relational approaches. 
However, did they do so out of choice or was computation the only method they had at 
their disposal? All three above studies identified some students who opted for 
computational methods to deal with single-number missing number sentences, but could 
successfully apply ideas of equivalence and compensation to solve related sentences 
involving literal symbols. For these reasons, a clear computational strategy does not imply 
that such students are incapable of using a relational approach. Some may simply prefer to 
use a computational approach because it appears easier or is more familiar. 

The current study therefore needed to include a different type of number sentence 
where all students are “pushed” to think relationally. Number sentences involving two 
unknown numbers, such as 18 + (Box A) = 20 + (Box B), seem to have this potential. 
These are called Type II number sentences to contrast with Type I number sentences which 
have a single missing or unknown number. While it is possible to use calculation to find 
particular instances of Type II number sentences like 18 + (Box A) = 20 + (Box B), 
identifying a general relationship requires students to move beyond computational 
thinking. Ideally, a student would say that the sentence will always be true as long as the 
number in Box A is two more than the number in Box B. But, in the classroom, how well 
and how clearly do students frame and express such generalisations? Being able to derive a 
correct mathematical generalisation from numerical examples is a key element of algebraic 
reasoning (Carpenter and Franke, 2001; Lee, 2001; Zazkis and Liljedahl, 2002). 

Methodology 
Design of Questionnaire 

Type II number sentences – involving two unknown numbers – across all four 
operations – were used throughout the questionnaire. Initial questions might allow scope 
for computational approaches. But, following Fujii (2003), subsequent questions needed to 
push students towards identifying the relational elements embodied in these expressions, 
and to focus especially on expressing underlying mathematical generalisations. 

Finally, to determine if equivalence and compensation, when used in Type II number 
sentences, provide a bridge to algebraic thinking, a question involving literal symbols was 
used for each operation in conjunction with its related Type II number sentence. These 
questions were modelled after the research programme, Concepts in Secondary 
Mathematics and Science, (CSMS, see Hart, 1981) which asked students, for example: 
What can you say about c and d in the following mathematical sentence? 

c + 2 = d +10 
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This type of question was called a Type III sentence. Structurally similar to Type II 
number sentences, it allowed students to say, ideally, that it will be true for any values of c 
and d provided c is 8 more than d. But some students may fall short of this explanation, 
simply giving specific values of c and d for which the sentence is true. Other students may 
say “c is more than d” but cannot fully specify the relationship. Such incomplete or partial 
interpretations may indicate different stages of development of relational thinking. 

Type II and III: Sentences Involving Two Related but Unknown Numbers 
This study focuses on four sets of questions, each representing one of the four 

operations, involving both Type II and Type III sentences. Each question was presented 
using a common template shown in Figure 1 which deals with the operation of addition. 
Type II questions are exemplified in parts (a) to (d) in Figure 1. These were then followed 
by a related Type III question, shown in part (e), involving the same arithmetical operation 
and using literal symbols. 

 
Can you think about the following mathematical sentence: 

18 +      = 20 +   
Box A     Box B 

(a) In each of the sentences below, can you put numbers in Box A and Box B to make each sentence 
correct? 

 
18 +      = 20 +   

Box A     Box B 
 
18 +      = 20 +   

Box A     Box B 
 

18 +      = 20 +   
Box A     Box B 
 

(b) When you make a correct sentence, what is the relationship between the numbers in Box A and 
Box B? 

 
(c) If instead of 18 and 20, the first number was 226 and the second number was 231 what would be 

the relationship between the numbers in Box A and Box B? 
 
(d) If you put any number in Box A, can you still make a correct sentence? Please explain your 

thinking clearly. 
 
(e) What can you say about c and d in this mathematical sentence?  c + 2 = d + 10 
 

Figure 1. Question involving addition and Type II and Type III questions. 

Participants 
The participants were drawn from Year 6 and Year 7 (12 to 14 years-old) students in 

two schools, one in Australia and one in China. The Chinese sample consisted of two intact 
classes consisting of 32 students in Year 6 and 36 students in Year 7. In the Australian 
school, one Year 6 class of 25 students was involved and three Year 7 classes consisting of 
71 students altogether. The sample was a convenience sample. The performances of 
students are therefore not presented as being normative of schools in each country, and 
may reflect the teaching they have received. However, this limited sample allows one to 
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examine students’ performances on the two types of sentences, and to track what students 
do over certain junctures. Translation of the questionnaire into Chinese was prepared by 
faculty members at an Eastern Chinese university. Graduate students at the same university 
and two Chinese speaking graduates in Australia assisted with the translation of students’ 
responses. Students’ written responses were read independently by two markers. A very 
high degree of consistency of classification was evident across markers in both countries. 

Key Questions to be Investigated in this Paper 
The focus of this paper is about exploring some of those junctures, connections or 

linkages in relation to Type II and Type III sentences. Key issues to be investigated in this 
paper are how to classify the different kinds of responses to Type II and Type III sentences, 
and how performances on Type II sentences influenced performance on Type III sentences. 

Results and Discussion 
All students attempted the addition and subtraction questions involving Type II and III 

sentences. Some Year 6 students in the Chinese school had difficulty going any further, but 
this provided sufficient evidence. Year 6 students in the Australian school and Year 7 
students in both schools generally completed all, or most of, the questionnaire. 

Results on Type II and III Sentences 
Type II and Type III sentences had been deliberately crafted to “push” students into 

relational responses especially those who may have completed parts (a) of these questions 
by computation. Almost all students without exception were able to place numbers 
correctly in Box A and Box B to make a correct sentence. Some students admittedly chose 
quite small numbers to place in the boxes to give correct sentences. 

Having constructed several correct sentences in this way, all students attempted to 
describe the relationship between the numbers in Box A and Box B. However, there were 
clear differences in the way students described the relationship between the number in Box 
A and Box B or between c and d. These differences are shown in the following Table 1. 
Non-Directed Relational responses to part b and part c of Type II number sentences, as 
shown in Table 1, are incomplete but they are not wrong. Similar partially complete types 
of responses are exemplified below in Table 1 by Directed (no magnitude) Relational 
responses and Directed (non-referenced) Relational responses.  

Fully Referenced and Directed Relational responses to part b of Type II sentences were 
evident in “B is 2 less than A” (Chinese Year 6 student answering part b for addition) and 
“Box A is 3 less than Box B” (Australian Year 7 student answering related part b question 
for subtraction)”. Examples of fully relational responses to part d questions are “As long as 
B is 2 less than A” (Chinese Year 6 student answering the question involving addition) and 
the response by an Australian Year 7 student to question for part d involving subtraction 
who said “Any number can be in Box A, so long as Box A is 3 less than Box B”. Students 
who used various incomplete expressions in part b questions to describe the relationship 
between Box A and Box B were unable to give a successful response to part d which asked 
“If you put any number in Box A, can you still make a correct sentence?” 
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Table 1 
Describing the relationship between the numbers in Box A and Box B and between c and d 

Response 
type 

Examples 

Incorrect 
Relation 

Students continue to use ‘difference’ on multiplication and division 
question, as in 
– the difference (between c and d) is always 16 (as in c ÷ 8 = d ÷ 24 ) 

Non-directed 
Relation 

– they would always be 5 apart [as in 3 ÷ (Box A) = 15 ÷ (Box B)] 
– there is always a 3 difference [ as in 72 – (Box A) = 75 – (Box B) ] 
– the numbers have a distance of 2 [ as in 18 + (Box A) = 20 + (Box B) ] 

Directed (no 
magnitude) 

or 
Directed 

(non-
referenced*) 

Relation 

– so long as the number in Box B is larger [ as in division or subtraction 
examples above ] 
– d will be more than c [ as in c – 7 = d – 10 ] 
– one number is always higher than the other number by 2 [ as in addition 
example above ] 
– one is 2 more than the other [ as in addition example above ] 

 
Referenced 

Directed 
Relation 

– one is 3 more than the other, Box B is bigger [ as in subtraction example 
above ] 
– c is 8 ahead of d [ as in c + 2 = d + 10 ] 
– A is 5 times less than B [as in 3 ÷ (Box A) = 15 ÷ (Box B)] 
– difference of 2, A larger [ as in 18 + (Box A) = 20 + (Box B) ] 

Note. “non-referenced” means not to point out the relational object, such as Box A and Box B, or c and d. 

Categorisation of Types of Relational Thinking on Type II and III Questions 
Based on the responses to Type II and III sentences across the four operations, we 

categorised relational thinking as Established Relational Thinking, Consolidating 
Relational Thinking, and Emerging Relational Thinking. In both schools in Year 6, many 
students still appeared to be operating as Emerging Relational Thinkers, less so in the 
Australian school as shown in Table 2 below. But in both schools by Year 7 the majority of 
students were able to show Consolidating or Established Relational Thinking. The defining 
characteristics of each of these three categories are as follows: 

Established Relational thinkers successfully completed at least three of the four 
operations. As illustrated in Figure 2, they are able to: (a) specify the relationship between 
the numbers in Box A and the numbers in Box B with clear references to the numbers, 
including the magnitude and direction of the difference between them; (b) employ a similar 
form of words used to describe this relationship as a part of the condition that describes 
how any number can be used in Box A and still make a true sentence; (c) explain clearly 
how c and d are related for the Type III sentence to be true, treating c and d as general 
numbers. 
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Figure 2. Sample response showing established relational thinking. 

Consolidating Relational thinkers, by contrast, almost always gave a full and correct 
specification in parts b and c of the relationships between the numbers in Box A and the 
numbers in Box B according to the operation under consideration; but were not able to 
give a consistent and correct response in part d to how any number might be used in Box A 
and still have a true sentence; and were only rarely able to give a complete explanation of 
the relationship between c and d, typically referring to some feature of the relationship (e.g. 
Directed no magnitude), or giving a specific pair of values for c and d. Those students who 
only completed questions relating to two of the four operations were also classified as 
Consolidating Relational Thinkers, even if their responses were fully correct. 

 

 
Figure 3. Sample response showing emerging relational thinking. 
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Emerging Relational thinkers– as illustrated in Figure 3 – typically: (a) identify some 
feature of the numbers used in Box A and Box B, but cannot completely specify the 
relationship between the numbers used in Box A and Box B; (b) focus on this feature when 
trying to explain how any number can be used in Box A and still have a true sentence, but 
are unable to describe this relationship completely; (c) may attempt to give a correct pair of 
values for which c and d might make a true sentence; or they focus on one aspect of this 
relationship, as in the response shown in Figure 3; or omit this question altogether. 

Among Established and Consolidating Relational thinkers, shown in Table 2, there was 
a striking association between making a clear and correct response to part d and describing 
the relationship between the values of c and d to make the corresponding Type III sentence 
true. Among the 26 Year 6 students in both schools, classified as Consolidating or 
Established Relational thinkers, 70% of those who gave a correct response to a particular 
part (d) item also correctly described the relationship between c and d in the corresponding 
part (e) item. This same feature occurred in 90% of cases among the corresponding 89 
Year 7 students, in both schools. In addition, a successful response to a part e item was 
rarely preceded by an inadequate response to its related part d.  
Table 2 
Student performances on Type II and III between Chinese and Australian students 

School Year Emerging Relational Consolidating or 
Established Relational 

Chinese Year 6 19 13 

 Year 7 5 31a 
Australian Year 6 12 13b 

 Year 7 13 58c 
Notes: (a) 6 out these 31 students successfully completed all questions; (b) 3 out these 13 students 
successfully completed all questions; (c) 28 out these 58 students successfully completed all questions. 

Conclusions and Implications 
Analysing the performances of the four different groups allows several important 

conclusions to be drawn concerning some key junctures in relational thinking. Different 
student responses to parts b and c of Type II questions have different potential for 
completing part d relating to Type II and part e relating to Type III questions. If students 
did not completely specify the numbers in Box A and Box B and the relationship between 
them in parts b and c, they were without exception unable to specify a condition in part d 
that describes how any number might be used in Box A and still have a true sentence. Thus, 
Emerging Relational thinkers who answer part b (or part c) incompletely, appear unable to 
rectify this incompleteness in part d when asked to specify a condition that describes how 
any number might be used in Box A and still have a true sentence.  

By contrast, a successful generalisation about Type II number sentences in part d was 
almost always followed by a successful explanation of the relationship between c and d in 
Type III sentences. Some Consolidating Relational thinkers who successfully completed a 
part e question did not successfully complete the related part d. These students may have 
treated part e as a kind of textbook question, without seeing any structural similarity 
between part d and part e. But the very close association between successfully completed 
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parts d and parts e suggests that students saw and were able to capitalise on the structural 
similarity between the two questions. Established Relational thinkers either described a 
condition for the sentence involving c and d to be true, as in ‘As long as c is 8 more than 
d ’, or they wrote symbolic expressions for this condition such as c – d = 8 or c = d + 8. 

A striking fact is that students who did not completely specify the numbers in Box A 
and Box B and the relationship between them in parts b and c for Type II sentences never 
answered part d successfully, nor could they specify a condition that describes the 
relationship between c and d in Type III sentences (part e). Emergent Relational Thinking 
characterised by responses to parts b and c that are either Non-directed, or Directed (no 
magnitude), or Directed (non-referenced) seems to lock students into forms of thinking that 
prevents them from making the kind of generalisations required for part d and e. 

While these descriptions can be seen positively as denoting an early stage of relational 
thinking development, teachers need to help students to articulate fully referenced and 
directed relational descriptions. This may be done through highlighting to students the 
disadvantages and advantages that different descriptions offer. 
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