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Details are provided of simple algebraic items which can be used to detect two particular ways 
students think about the numerical meanings of letters (in contrast to non-numerical thinking). The 
data from Year 7 students (n=228) and Year 8 students (n=139) on these items is analysed using 
response patterns to probe student thinking. Less than 10% of the students were correct on these items 
whilst the prevalence of the two most common error patterns is 20%-30% at each year level. New 
response patterns are detected, indicating that further improvements to the items will enable students’ 
thinking to be investigated further.  

Many researchers have investigated students’ difficulties with meaning of letters in 
algebra (for example, Küchemann 1981; MacGregor & Stacey 1997, Fujii 2003). For 
example, it is well-known that some students incorrectly interpret a letter as an object 
rather than a number, which we classify as non-numerical thinking. This is in contrast with 
incorrect numerical ways of thinking which involve replacing letters by numbers, but 
having incorrect ideas about what values the numbers can take. 

In this paper, we provide additional evidence of the existence of such numerical 
misconceptions related to students’ interpretations of letters. We show how patterns of 
responses to carefully designed items can reveal student’s thinking. 

Patterns of responses have been shown before, in another context, to reveal students’ 
thinking. Steinle and Stacey (2003a, 2003b) showed that a specially designed Decimal 
Comparison Test provided data that was amenable to response pattern analysis and that 
large groups of students had misconceptions regarding the size of decimal numbers. 

The items analysed in this paper come from a much larger set we are developing as an 
online resource (www.smartvic.com) to assist teachers with “assessment for learning”. 
SMART tests (Specific Mathematics Assessments that Reveal Thinking) are designed for 
teachers to use for diagnostic purposes and planning future teaching (e.g. next day). These 
electronic tests are quick for students to complete (5 minutes) and the teacher is 
instantaneously provided with an online diagnosis for each student. Accompanying the 
diagnoses are explanations of the associated likely student thinking and/or reasons for the 
errors, along with teaching suggestions and links to other resources. These suggestions are 
designed to increase teachers’ mathematical pedagogical content knowledge for specific 
topics, so affect both short-term teaching (of current students) and long-term teaching (of 
future students). 

Literature 
Küchemann (1981) is one of the foundational researchers in the field. Based on test 

responses of almost 1000 students (age 14) he analysed students’ understanding of algebra; 
in particular, the various meanings that students ascribe to letters. He summarised students’ 
apparent difficulties in understanding of the symbols or letters used in algebra at two main 
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levels. One of the items in this report by Küchemann, used later by Booth (1988), and Fujii 
(2003), asked students to decide when the statement L+M+N=L+P+N was true (always, 
never or sometimes). He found about half the students in his sample chose never; other 
researchers have likewise found a high proportion of students in their samples doing the 
same. This particular misconception is labelled Different Letter means Different Number 
(DLDN) in this paper. 

MacGregor and Stacey (1997) conducted a large scale study of some hundreds of 11-
15 year old students to identify students’ interpretations of algebraic notation. They 
provide a list of reasons why students have difficulties with algebra: 

intuitive assumptions and sensible, pragmatic reasoning about an unfamiliar notation system; 
analogies with symbol systems used in everyday life, in other parts of mathematics or in other 
school subjects; interference from new learning in mathematics; and poorly-designed and 
misleading teaching materials. (p. 1) 

Some of the interpretations that Küchemann (1981) and MacGregor and Stacey (1997) 
discuss involve non-numerical interpretations of letters, for example, letter ignored and 
letter as object. Other incorrect interpretations are numerical, for example, students who 
associate a number according to the position of letter in the alphabet (a = 1, etc), and those 
who believe that different letters must represent a different number (DLDN). In this paper 
we will focus on numerical misconceptions. 

Such misconceptions are not confined to one culture nor to students who are generally 
‘weak’ in mathematics. Fujii (2003) reports data from Japan – a country which tends to 
score well in international testing. He provided students with written test items including 
the two problems in Figure 1. Fujii noted that he had intended to analyse these two 
problems individually but, after he noticed groups of students who were correct on 
Problem 1 and incorrect on Problem 2 and vice-versa, he realised the importance of 
examining response patterns across both items. 

 
Problem 1: 
Mary has the following problem to solve: “Find 
values(s) for x in the expression: x + x + x = 12” 
She answered in the following manner: 
a. 2,5,5 
b. 10,1,1 
c. 4,4,4 
Which of her answer(s) is (are) correct?  
(Circle the letter(s) that are correct: a,b,c) 
State the reason for your selection. 

Problem 2: 
Jon has the following problem to solve: “Find 
values(s) for x and y in the expression: x + y = 16” 
He answered in the following manner: 
a. 6,10 
b. 9,7 
c. 8,8 
Which of his answer(s) is (are) correct?  
(Circle the letter(s) that are correct: a,b,c) 
State the reason for your selection. 

Figure 1. Source items from Fujii (2003). 

He allocated students to one of four groups based on their response patterns, as in 
Table 1. The first group (referred to as Experts in this paper, and Level 3 by Fujii) 
consisted of students who were correct on both items. He referred to another group as 
Level 1; these students circled all answers in both problems and hence were incorrect on 
Problem 1 and yet correct on Problem 2. We will label this misconception Empty Boxes 
(EB), as these students appear to treat the letters x and y as they might treat empty boxes 
(i.e. interpret Problem 1 as □ + □ + □ = 12) in a primary school “fill the gaps” exercise. 
The next group (Level 2 by Fujii) correctly answered Problem 1 but were incorrect on 
Problem 2, by making a particular error; omitting to circle part c. We will label this 
misconception Different Letter means Different Number (DLDN). These students reject the 
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option where x and y are equal. Response patterns which did not match those described 
were labelled as Level 0; Fujii suggested that these students “had a vague conception of 
literal symbols” (p.56). 

In the last part of each problem, Fujii asked students to explain their reasoning. This 
written data provided evidence for the thinking behind the response patterns, as described 
above, which was further confirmed in interviews. 
Table 1 
Summary of response patterns to Problems 1 and 2 identified by Fujii (2003) 

Problems 
Level 3  
(Expert) 

Level 2  
(DLDN) 

Level 1  
(EB) 

Level 0  
(other) 

Problem 1 c√ c √ a,b,c × 
Problem 2 a,b,c√ a b × a,b,c √ 

else 

 
It is important to note that data analysis involving, for example, the percentage of 

students correct on individual items will not reveal the response patterns described above. 
Stacey and Steinle (2006) analysed data from another diagnostic test (DCT2) in two ways: 
using response patterns and Rasch analysis. They note, 

Being correct on an item for the wrong reason characterises DCT2. It is one of the reasons why the 
DCT2 data do not fit the Rasch model, because these items break with the normal assumption that 
correctness on an item indicates an advance in knowledge (or ability) that will not be ‘lost’ as the 
student further advances. (p. 87) 

As can be seen from Table 1, there are students who can give correct answers to a 
problem for the “wrong reason”; for example, students with EB thinking can answer 
Problem 2 correctly. It is the pattern of responses, not the individual responses, that is the 
key for diagnosis. 

Method 
Participants and Procedure 

The data reported in this paper comes from Year 7 and Year 8 students from four 
secondary schools in Melbourne, representing a range of socio-economic backgrounds. 
The testing took place in Term 2 of 2008; at this time, all Year 7 students from the four 
schools were tested and all Year 8 students at three schools. 

While all students in a year level were involved in testing, only students who returned 
consent forms (57% overall) are included in this analysis. The normal classroom teacher 
took their complete class into a computer laboratory for the duration of a normal lesson for 
the purposes of the testing. These 2 items (with identifier codes 498 and 502) were offered 
amongst a large set of test items. Three different test versions were provided to reduce the 
opportunity for students to copy from those around them. 

For ease of discussion, students who did not fully complete these two items are not 
reported below. Hence, the following analysis is based on 367 students who provided all 6 
responses to the two items of interest: Year 7 (n=228) and Year 8 (n=139). 

Research Instruments and Analysis Tools 
The data discussed below is from two items within the Algebra Module; these items 

are provided in Figure 2 and were adapted from Fujii (2003). Firstly, we subtly changed 
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the instructions. Rather than circling or selecting the option(s) which the students believed 
were correct, (this assumes that non-selection indicates the student thinks the statement is 
wrong), we provided three drop-down lists in each item, and students needed to actively 
choose each time. 

Secondly, we changed the format of the last task in Item 498: Mandy wrote x = 4 
replaced the option 4,4,4 to make this statement more mathematically precise. 

 
Item 498: 
Some students had to find some values of x to make 
this equation true: x + x + x = 12 
Mark the work of each student. 

Mary wrote x = 2, x = 5 and x = 5 
Millie wrote x = 9, x = 2 and x = 1 
Mandy wrote x = 4 

Item 502: 
Some students had to find some values of x and y to 
make this equation true: x + y = 16 
Mark the work of each student. 

John wrote x = 6, y = 10 
Jack wrote x = 8 and y = 8 
James wrote x = 9 and y = 7 

Figure 2. Items from SMART test Algebra Module 

The response patterns that we predicted would be generated within the data are 
provided in Table 2. A Pattern Recognition script was created by the research team to 
assist with data analysis. This script identifies patterns in specified columns of the 
spreadsheet as well as the frequency with which each pattern occurs. 
Table 2 
Predicted response patterns and accuracy patterns to Items 498 and 502. 

Response Patterns  Accuracy Patterns Abbreviated tasks within  
Items 498 and 502 Expert3 DLDN2 EB1  Expert DLDN EB 
Mary x = 2, x = 5, x = 5 W W R  √ √ × 
Millie x = 9, x = 2, x = 1 W W R  √ √ × 
Mandy x = 4 R R R  √ √ √ 
John x = 6, y = 10 R R R  √ √ √ 
Jack x = 8, y = 8 R W R  √ × √ 
James x = 9, y = 7 R R R  √ √ √ 
Note: The Accuracy Patterns indicate when a response of R (Right) or W (Wrong) is actually correct (√). 
(1, 2 and 3 refer to Fujii’s Level 1, Level 2 and Level 3) 

Results and Discussion 
The percentage of students (n=367) who were correct on each task in Item 498 is 46%, 

56% and 75%, respectively, and in Item 502, 86%, 59% and 75%, respectively. These 
statistics are provided for completeness and are not discussed further in this paper. 

The Pattern Recognition script provided a list of the most common patterns ordered by 
frequency. The top seven patterns had frequencies of 74, 70, 29, 23, 17, 13 and 11; details 
of these patterns are provided in Table 3. 
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Table 3 
The seven most frequent response patterns (n=367) 

Response Patterns Abbreviated tasks within  
Items 498 and 502 EB DLDN New 1 Expert New 2 New 3 New 4 
Mary x = 2, x = 5, x = 5 R W R W W W R 
Millie x = 9, x = 2, x = 1 R W R W W W W 
Mandy x = 4 R R W R R R R 
John x = 6, y = 10 R R R R R W R 
Jack x = 8, y = 8 R W R R W R R 
James x = 9, y = 7 R R R R W W R 
Frequency  74 70 29 23 17 13 11 
Ratio* 12.9 12.2 5.1 4.0 3.0 2.3 1.9 
* The ratio of observed frequency to expected frequency if all students chose randomly. 

Only 23 students provided the predicted response pattern of Expert, making this the 
fourth most common pattern. It is clear from Table 3 that the two most frequently 
occurring patterns are those that match the predictions from the two main misconceptions 
EB (n=74), and DLDN (n=70). There are four new patterns which emerged from the data 
and will be discussed below. 

The seven patterns noted in Table 3 account for 237 (65%) of the 367 responses. If 
students were randomly choosing between two responses for six tasks, then we would 
expect all 64 possible patterns to be well-represented. The ratio between the observed 
frequency and the expected frequency if all students were guessing at random is provided 
in the last row of Table 3; the first two response patterns (EB and DLDN) occur more than 
12 times as often as would be expected if students’ choice of answers was random. 

The pattern labelled New 1 (n=29) is unexpected but more common than the Expert 
pattern. A comparison with EB reveals one different response. We propose that the change 
to the original item (part c in Problem 1 in Figure 1) has caused a split within the group of 
students who have the EB misconception. If students believe that we need any three 
numbers which add to 12 in Item 498, then x=4 (while correct from an Expert’s point of 
view) is not a suitable answer, and these students would then choose Wrong (W) on this 
task. This is an example of how edits to an item to improve it from one point of view can 
result in unexpected reactions by students with other points of view. 

The pattern labelled New 2 (n=17) is also unexpected. A comparison with DLDN 
reveals one different response; part c in Item 502. One possible explanation is that some 
students might believe that as the letter x comes before the letter y, then the number x must 
be smaller than the number y. This would lead to the response of W (Wrong) when 
presented with x=9 and y=7. This hypothesis can be tested in later versions of the items. 

The pattern labelled New 3 (n=13) might be due to students who think that “all 
equations have one solution”, hence the one solution for x + x + x = 12 is x is 4 and the one 
solution for the one equation x + y = 16 is x and y are 8. 

The pattern labelled New 4 (n=11) could arise in various ways. A comparison with EB 
reveals one different response; likewise there is one different response to Expert. Hence, 
careless answering (i.e. inconsistent application of the student’ own thinking) from two 
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groups of students might be the reason that this pattern has emerged, but this is not 
definitive. Alternatively, there might be a currently unidentified misconception that 
generates this response pattern. As we currently have no direct evidence for these 
speculations, New 3 and New 4 will be grouped with the other “unclassified” response 
patterns with low frequencies in the following analysis. 

Prevalence of Classifications by Year Level 
On the basis of the above discussion it seems reasonable to group some patterns 

together for the next analysis. Four codes will be used; Expert is the code given to just one 
response pattern (as defined in Table 2) while the other three codes are given to various 
combinations. EB_total is a combination of EB and New 1; DNDL_total is a combination 
of DNDN and New 2 (making it a slightly larger group than Fujii would have identified); 
and Unclassified is a combination of all other response patterns including New 3 and New 
4. 

Figure 3 provides an analysis of the distribution of these four codes for Year 7 (n=228) 
and Year 8 (n=139). We can see that there is a small growth in the percentage of Experts 
(about 5% to about 10%) from Year 7 to 8. This surprisingly low rate is not dissimilar to 
those reported in Fujii (2003); about 10% of similarly-aged students in both the US and 
Japanese samples. 

 
Figure 3. Percentage distribution of four codes in Years 7 and 8. 

The percentage of students in EB_total is constant at about 30%, which is surprising 
given that the Year 8 students have had an extra school year of exposure to algebra. If this 
is, as Fuji predicts, a lower level of understanding than DLDN, we might expect a decrease 
in the prevalence of this misconception with older students.  

There is an increase in the proportion of students in DLDN_total from about 20% 
(Year 7) to 30% (Year 8) which does accord with the suggestion that DLDN is a higher 
level misconception than EB. This is not longitudinal data, so this paper does not provide 
direct evidence. 

There is a drop in the proportion of students in Unclassified from Year 7 to Year 8 
(about 50% to about 30%). Fujii labelled those students Level 0, suggesting that they had a 
less sophisticated understanding than students with EB (his Level 1). We contend that the 
Unclassified group might contain students with varying levels of understanding. In our 
previous longitudinal research, we identified a hierarchy based on readiness to move to 
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expertise (Steinle & Stacey 2003a). Of the students who were not Experts, those who were 
labelled Unclassified had a higher likelihood of moving to expertise on the next test (about 
6 months later), than students who had an identified misconception. It seems that a student 
with a strongly held wrong belief is less likely to learn compared with another student who 
does not. This may also be true for understanding of letters. 

Recall that our intention with these two items was to diagnose students with particular 
numerical misconceptions with the meaning of letters. What about students who have non-
numerical interpretations (for example, think that y stands for yachts)? We expect that 
these students will be among the Unclassified group. If this is the case, then it would add 
weight to the hypothesis that these students have a less sophisticated understanding than 
EB or DLDN. 

Implications 
Making teachers aware of typical student thinking in a particular topic is likely to 

change their teaching. They might recognise the typical misconceptions in comments made 
by students and then target teaching to remove them, or, they might be able to prevent 
these misconceptions occurring in the first place. Research on changes to teachers’ 
mathematical pedagogical content knowledge is being conducted in this project. 

Clearly there is further research which can be done to resolve some of the issues raised 
in this paper. For example, when we analyse the other items in the SMART test’s Algebra 
Module that these students completed we can determine (i) if, based on responses on other 
items, there is a hierarchy in these misconceptions, (ii) what proportion of the Unclassified 
students hold non-numerical misconceptions, (iii) how the students labelled as Experts on 
these items deal with other algebra items. 

Furthermore, in the light of these results, we have revised our items for the next round 
of testing. We have included additional statements for students which will allow us to 
identify the causes of New 1 and New 2 patterns. 

Conclusion 

It is only by asking the right, probing questions that we discover deep misconceptions, and only by 
knowing which misconceptions are likely do we know which questions are worth asking (Swan, 
1983, p 65)  

The work presented in this paper has attempted to break into this cycle by further 
investigation of patterns of student thinking identified by earlier research (Küchemann 
1981; MacGregor & Stacey 1997, Fuji 2003). In addition, we have adapted items from a 
paper-test to an online test that allows for editing or addition of items in later testing 
cycles. The analysis of the data using response patterns has confirmed predicted 
misconceptions about the numerical values that letters may be assigned, and has revealed 
some interesting variations. These new hypotheses will be investigated in future SMART 
testing. 

Response pattern analysis has already proved useful in diagnosing student 
misconceptions in students’ understanding of decimal notation (Steinle & Stacey 2003a, 
2003b). In this paper we have shown how another topic has been amenable to the same 
student-focussed approach, in contrast with other approaches such as item analysis or 
student scores. 

The prevalence of expertise on these simple algebraic items is very low; about 10% of 
the Year 8 students chose correctly on the set of six tasks. For approximately 90% of these 
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Year 8 students, then, mathematics lessons containing algebra are rendered 
incomprehensible; these students are trying to learn procedures, without meaning, carried 
out on letters with the wrong meaning. For example, a student with the Empty Box 
misconception, who interprets x + x + x = 12 as □ + □ + □ = 12 and believes that 10+1+1 is 
an acceptable answer, is unlikely to make sense of the explanation that x + x + x= 12 is 
equivalent to 3x=12 and then x=4. The consequences of limited conceptual understanding 
of the meaning of letters are quite severe. The possibility of using technology to support 
someone with limited procedural skills is unlikely to work if they have inadequate 
conceptual understanding. Computer algebra systems still require an understanding of the 
meaning of letters and the correct interpretation of variables. 
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