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This paper describes an investigation of students’ strategies for solving linear equations. The 
assessment techniques used for investigating algebra paralleled those used for investigating number in 
the New Zealand Numeracy Development Projects (NDPs). In this study of 621 Year 7 to Year 10 
students oral interviews were used to investigate the strategies that students used to solve equations. 
Rasch analysis was used to investigate item difficulty and student ability, and then the strategies 
associated with each question were examined. The data suggest that there is a hierarchy of 
sophistication of strategies. Many students were unable to solve a lot of the equations as they were 
restricted to less sophisticated strategies. The most sophisticated strategy of solving equations by 
performing transformations was understood by very few students. 

A new curriculum for New Zealand schools was introduced in 2007 (Ministry of 
Education, 2007). The learning area of Mathematics and Statistics is now divided into 
three strands rather than the previous six, with Number and Algebra being one strand.  The 
implementation of the curriculum in Number up to Year 10 of schooling is guided by the 
Numeracy Development Projects (NDPs), which provide a framework for children’s 
development in number. The achievement objectives of the new curriculum are grouped to 
reflect the structure of the Number Framework (Ministry of Education, 2003), which 
details the number strategies that students use and the number knowledge required for 
these strategies. At the lower levels of the new curriculum the Number and Algebra 
achievement objectives are divided up into number strategies, number knowledge, 
equations and expressions, and patterns and relationships. The integration of number and 
algebra into one strand follows debate within the mathematics education community in 
New Zealand and within international research (see for example Carraher & Schiemann 
(2007) and Kieran (1992)) as to what constitutes algebraic thinking. 

The NDPs have been successful at raising the achievement of New Zealand children in 
the strand of Number (G. Thomas & Tagg, 2007) and various initiatives are currently 
underway to extend the projects into early algebra. This study takes a similar approach to 
the NDPs by specifically examining students’ strategies for solving linear equations 
through the use of oral interviews. 

Children’s Strategies 
Students have struggled with introductory algebra for a long time (Cockcroft, 1982) 

and teachers have little to guide them in designing programmes of learning. Little is known 
about the strategies that students use to solve equations or how these strategies are related 
to conceptual development. A useful summary of strategies used by students is, however, 
provided by Kieran (1992), who describes the use of known basic facts, counting 
techniques, guess and check, cover-up, working backwards and formal operations. 

The difficulties that students experience, related to their use of algebraic strategies, are 
well documented. Because much arithmetic in schools is presented as a computation ready 
to complete, e.g. , and because pressing the equals button on a calculator performs 
a calculation on whatever has been entered, children understand equals as meaning 
compute now rather than is equivalent to (Booker, 1987; Booth, 1988). Linchevski (1995) 
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states that in the transition from arithmetic to algebra children need to move from a 
unidirectional view of the equals sign to a multidirectional one. 

Closely related to this is the use of an equation as a process, rather than an object that 
can be operated on (Sfard, 1991). Children initially see equations as the description of an 
arithmetic process, e.g. , and when presented with an equation to solve, e.g. 

, they also see it as the description of an arithmetic process with guess and 
check as a natural way of finding x. Even the more sophisticated strategy of solving the 
equation by working backwards may result from a view of equations as processes, yet this 
is often not revealed until students encounter equations of the kind . It is 
no longer possible to regard the equation as the description of a process giving a result, and 
it is essential to view the equation as an object to be acted upon in order to solve it (Sfard 
& Linchevski, 1994). Herscovics & Linchevski (1994), however, have presented data to 
show that many children revert to the strategy of guess and check to solve equations of this 
type. The issue of operating on unknowns is another perspective on why equations with 
unknowns on both sides cause so many difficulties. Booker (1987) suggests that it is the 
shift from manipulation of numbers in order to solve for an unknown, to the manipulation 
of unknowns themselves that marks the entry into algebra proper. 

Children’s stage of numeracy is likely to be important for their understanding of 
expressions and equations (Irwin, 2003). Equations of the form can be solved by 
advanced counters through guess and check, but can be solved much more easily by part-
whole thinkers able to visualise 7 as . It can be argued that to solve equations such as 

 requires multiplicative thinking in order for a child to do more than simply follow 
prescribed algorithms. Furthermore equations of the kind  might require an 
understanding of numbers beyond simple additive part-whole or multiplicative part-whole 
thinking. A large-scale study by Warren (2003) found that the majority of students leave 
primary school with a limited awareness of mathematical structure and of arithmetic 
operations as general processes. 

It is important to appreciate that algebra is much more than the manipulation of 
symbols and that it may be viewed as the symbolising of general numerical relationships 
and mathematical structures and operating on those structures (Kieran, 1992). Thomas and 
Tall (2001) describe the long-term cognitive development of symbolic algebra as from 
operational procepts of arithmetic, to evaluation processes in generalized arithmetic, to 
manipulation of procepts in manipulation algebra and finally defined concepts in axiomatic 
algebra. They suggest that each transition involves considerable cognitive reconstruction 
that acts as a barrier for many. Bednarz, Kieran, and Lee (1996) comment that algebra in 
schools is often reduced to rules for transforming and solving equations. As rule based 
algebra can be regarded as based on defined concepts it is not surprising that so many 
students experience confusion when a rule based approach is used. 

Within the NDPs rather than focusing on simply whether children successfully solve 
arithmetic problems, the strategies that children use to solve the problems are documented. 
Children are then grouped for instruction according to their most sophisticated arithmetic 
strategy rather than the difficulty of arithmetic problem (Ministry of Education, 2008). The 
teaching of solving equations has traditionally focussed on the difficulty of the equations 
presented to students rather than the strategies that students are actually using to solve 
them. To move to an approach more consistent with the NDPs more information is needed 
about how students solve equations. 
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Methodology 
This study of students’ understanding of strategies for solving equations related the 

strategies used to item difficulty and student ability. A structured diagnostic interview was 
administered to individual students by the researcher or the students’ classroom teacher. 
The students’ responses were coded and then analysed making use of Rasch Analysis 
(Wright & Masters, 1982). 

Subjects 
The study took place in a two intermediate schools (Years 7 and 8), two high schools 

(Years 9 and 10) and one college (Years 7 to 9). There was no attempt at representative 
sampling but instead the aim was to collect data from a wide range of students. The 
interview was administered to a total of 621 students in Year 7 (n=196), Year 8 (n=43), 
Year 9 (n=245) and Year 10 (n=137). Clearly Year 8 students are under-represented but 
this is ameliorated by the fact that interviews took place throughout the school year so 
students at the beginning of Year 9 and end of Year 7 were included. In the two schools 
where there was streaming all classes from each year level were included and in all schools 
no students were excluded on the basis of ability. 

Diagnostic Interview 
The diagnostic interview was developed in a previous study (Linsell, McAusland, Bell, 

Savell, & Johnston, 2006) and was guided by the literature on students’ strategies for 
solving equations (Herscovics & Linchevski, 1994; Kieran, 1992). 

The interview consisted of a series of increasingly complex equations, which the 
students were asked to solve with an explanation of their thinking. This work is part of a 
larger study, which also gathered further information but in this paper it is only the 
students’ responses to symbolic equations that is reported on. 

The questions were presented on cards so that the more difficult questions could be 
omitted as required without suggesting to the student that they were not coping. Each 
question was read to the student to minimise the impact of difficulties with reading 
symbolic equations. Calculators and pencil and paper were available for the students to 
use, but it was stressed that they could use whatever method they chose. 

The interviewer recorded what the student did and said and then classified the strategy 
used according to Table 1. 

 
Table 1 
Classification of strategies for solving equations 
Code Strategy 

0 Unable to answer question 
a Known basic facts 
b Counting techniques 
c Inverse operation 
d Guess and check 
e Cover up 
f Working backwards then guess and check 
g Working backwards then known fact 
h Working backwards 
i Transformations / equation as object 
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Data Analysis 
In Rasch models, the probability of a specified response (i.e. right/wrong answer) is 

modeled as a logistic function of the difference between the person and item parameter. 
Before applying this model to the data it was therefore necessary to ascertain that the 
variable of item difficulty was uni-dimensional. Factor analysis was initially employed to 
verify that a one-factor model was an adequate fit to the data. Following this Rasch 
analysis was used to determine item difficulty and student ability. These scores were then 
related to the strategies that individual students used for each question. 

Results  

Item Difficulty 
There was a huge variation between students in the number of equations that they were 

able to solve, with some questions being much harder than others (See Table 2). 
 
Table 2 
 Item Difficulty 
Equation Number of Students 

with Correct 
Responses 

Percentage of 
Students with 

Correct Responses 

Rasch Score 
(Item Difficulty) 

n – 3 =12 565 91 -3.75 
18 = 3n 511 82 -2.91 
n + 46 = 113 523 84 -3.054 
n_ = 5 
20 

206 33 1.111 

4n + 9 = 37 400 64 -1.405 
3n – 8 = 19 382 62 -1.153 
26 = 10 + 4n 362 58 -0.883 
n+12 = 18 
  4 

185 30 1.411 

5n + 70 = 150 283 46 0.185 
2 + n = 8 
   4 

153 25 1.873 

5n – 2 = 3n + 6 109 18 2.581 
2n – 3 = 2n + 17 
          5 

24 4 5.064 

v = u + at 5 1 7.283 
 
In general one-step equations were easier to solve than two-step, which in turn were 

easier than equations with unknowns on both sides. However it should also be noted that 
equations involving division were harder than similar equations with other operators. 
Nevertheless one-step equations involving division were easier than two-step equations 
involving division. 

Strategies Used 
Some strategies (formal operations, guess and check) could be used to solve any 

equation, while others (e.g. inverse operation for one-step equations, working backwards 
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for two-step equations) could be used for only a limited number of equations. For every 
equation (except the final one) there was a range of strategies successfully used by 
students, but the distribution of strategies varied from question to question. Responses to 
three questions are shown if Figure 2 to illustrate the ranges of strategies used. 

 

 
 

Figure 2. Students’ strategies for three equations. 

Hierarchy of Strategies   
To establish a hierarchy of strategies was not straightforward as the pattern of strategy 

use varied from equation to equation, with some equations lending themselves to being 
solved by one strategy rather than another. Another difficulty was that able students often 
reverted to guess and check for difficult questions, even though they used other strategies 
for easier equations. Less able students, in contrast, used guess and check for easy 
equations and were unable to solve more difficult equations by any strategy. 

The approach used, therefore, was to examine the strategies used on a question by 
question basis. For each question the ability of students using a particular strategy was 
investigated. Figure 3 shows the results for the same three questions shown in Figure 2. 
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Figure 3. Ability of students using each strategy. 

 
For each equation it was then possible to place in order the sophistication of strategies 

used. For example the equation 5n – 2 = 3n + 6 was solved using either guess and check or 
transformations. The mean ability of students using transformations was higher than that of 
students using guess and check, indicating that transformations was the more sophisticated 
strategy. 

The picture that emerged using this approach was fairly self-consistent. For all 
equations solved transformations was used by the most able students and guess and check 
by the least able. 

For one-step equations it was not possible to discern between counting strategies and 
known basic facts because for any one equation both strategies were never used. However 
for three of the four one-step equations inverse operations were used by more able students 
than students using either counting strategies or known basic facts. The exception was 

, which was far more difficult than the other one-step equations. For this equation 
the most able students solved it using a known basic fact. 
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Cover up was used by such a small number of students that no clear relationship to the 
other strategies emerged. 

For five of the six two-step equations working backwards was used by more able 
students than those using working backwards then known fact, which in turn was used by 
more able students than those using working backwards then guess and check. The 
exception was , but the number of students using any strategy other than 
working backwards was too small to draw any conclusions. 

The strategies used only on one-step equations clearly could not be compared directly 
with those used only on two-step equations. However two-step equations were much 
harder than one-step and working backwards involves using inverse operations. 

The order of sophistication of strategies indicated by this analysis is therefore guess 
and check, counting strategies / known basic facts, inverse operations, working backwards 
then guess and check, working backwards then known fact, working backwards, 
transformations. 

Discussion and Conclusions 
The strategies used by nearly all students varied from equation to equation. Most 

students chose a simple strategy that was sufficient for solving a particular equation, rather 
than necessarily using the most sophisticated strategy they were capable of. 

Not surprisingly, one-step equations were easier than those involving two or more 
steps.  However this study has shown that the strategy of solving one-step equations by 
inverse operations is used by more able students than those who use either known basic 
facts or counting strategies. These strategies in turn were used by more able students than 
those who solved one-step equations using guess and check. 

Inverse operations are clearly required for the strategy of working backwards on two-
step equations. It is important for teachers to realise that success at solving one-step 
equations does not necessarily mean that students can use inverse operations or that those 
students are ready to attempt two-step equations. Of particular note was the finding that 
using an inverse operation to solve an equation involving division was very difficult for 
students. 

Earlier work (Linsell et al., 2006) identified that the strategy of working backwards is 
not homogeneous. Many students are only just grasping this strategy and can use it only 
when the first step reveals a known basic fact to them for the next step. These students use 
the strategy of working backwards then known facts. Other students are prevented from 
fully using working backwards because of lack of knowledge of multiplication and 
division facts. These students use the strategy of working backwards then guess and check. 
This current study has confirmed these observations and shown that the mean ability of 
students using these three strategies differed. Again it is important for teachers to 
appreciate that success at solving two-step equations does not necessarily imply that 
students fully understand the strategy of working backwards. In fact some students can 
solve two-step equations only by guess and check. 

The strategy of transformations was used by only the most able students, with many 
students reverting to guess and check for equations with unknowns on both sides. As has 
been clearly identified (Herscovics & Linchevski, 1994), students have great difficulty 
with transformations. 

Consistent with the perspective of Filloy and Sutherland (1996), it is suggested that 
these strategies are not simply alternative approaches to solving equations, but represent 
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different stages of conceptual development. The approach used in this study is very similar 
to that used in the New Zealand Numeracy Development Projects, with strategy being 
separated out from knowledge required for strategy use. This approach allows the 
classification of students according to their most sophisticated strategy rather than the most 
difficult equation they are able to solve. Within numeracy teaching, students are grouped 
for instruction according to their most sophisticated strategy. It is suggested that a similar 
approach to grouping students is likely to be beneficial for teaching students to solve 
equations. 
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