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The paper describes results of a teaching experiment with five high school (Year 10 and 11) students. Four 
qualitative characteristics were established: the first step of solution, main information extracted from 
the problem, generalisation from a problem and completion of solution. From these characteristics the 
corresponding quantitative indices were introduced and analysed. The structure of two of them, specific SFS 
and common SHP,are given in detail. Investigation of quantitative indices and their qualitative characteristics 
gives an opportunity to find out more about interrelations between different stages of the problem-solving 
process. 

Introduction

Problem solving, in various forms and contexts, takes significant time in classroom activities throughout 
primary and secondary school. This area attracts the interest of both mathematics educators, seeking powerful 
activities in teaching and learning, and researchers, considering problem solving as a research domain. As a 
consequence many fundamental research papers on different aspects of problem solving appeared recently. 
For some of them the concept of a problem was the main focus, in others, students’ performance in problem 
solving and analysis of their thinking strategies were considered. In this paper we attempted to analyse 
the mathematical behaviour of gifted high school students while they were involved in problem solving 
activities of non-trivial problems. Indeed, most of students are able to solve standard problems and routine 
exercises, but with harder ones, the situation looks completely different. It is obvious that even the ablest 
students often experience difficulties in this kind of activity. However, why does this happen? Which factors 
were the crucial ones in students’ failure to solve a hard problem? How could teachers encourage students 
in the most effective way, if they fail to address a problem adequately? The answers to these questions 
and similar ones are extremely important for developing both further theoretical frameworka for the topic 
and practical implications in work with gifted students. Most high-profile students regularly participate 
in numerous mathematical competitions. To achieve the best results their training should be grounded on 
a sound theoretical base. But we have to recognise the fact that the stages of solving hard problems are 
hidden from researchers in many circumstances and the most talented students find their solutions so natural 
that explanations are not required. So, how can students’ abilities and skills to move toward a solution be 
investigated, evaluated, and further developed? What is a student’s perception of a hard problem? What are 
the obstacles to finding solutions for such a problem? Our aim was to find out more about the nature of this 
process. These questions have formed the basis of research the authors focused on for a long period of time 
(Passmore, 2007; Yevdokimov, 2005a, 2005b, 2006). This paper highlights the linkage between mathematical 
problems and student cognition. How do they depend and influence each other? Which factors have the 
most essential influence on students’ mathematical thinking and reasoning? In particular, how much helpful 
information can the statement of a problem provide for students? What part of the problem solving process is 
the most difficult for them and how we can evaluate students’ work on different stages of such activities? The 
paper attempts to answer these questions. 

Theoretical Framework

Mathematical tasks that are different from routine exercises are usually called non-trivial problems. They 
can be classified in many ways, for example, by level of difficulty. There are other ways to define non-trivial 
problems in the mathematics education literature. Morton (1927) defined a problem as any mathematical 
question where the person attempting an answer must select the operations. Krutetskii (1976) used the 
terminology “task complexity” as equivalent to intellectual complexity of a problem. According to Charles 
and Lester (1982), problems were classified as standard, non-standard, real-world problems, and puzzles. 
Hembree (1992) pointed out that “distinctions among definitions of a problem relate to the effort that solvers 
must make toward solution” (p. 244). Williams and Clarke (1997) identified six dimensions of task complexity 
– linguistic, contextual, operational, conceptual, intellectual, and representational complexity. We define a 
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hard problem as one that encourages the use of flexible methods, stimulated guessing, and use of unusual 
strategies towards a solution. Our conceptual framework is based on the construct of a mathematical problem 
and its solution implemented by students. It was influenced by the papers of Stein, Grover, and Henningsen 
(1996) and Henningsen and Stein (1997). The framework, shown in Figure 1, defines a hard mathematical 
task as a learning activity, the purpose of which is “to focus students’ attention on a particular mathematical 
concept, idea, or skill” (Henningsen & Stein, 1997, p. 528).

Figure 1. Mathematical task as implemented by students.

More exactly, we consider the modified third phase of the Henningsen and Stein (1997) conceptual framework 
with respect to hard problems in a constructivist framework. We followed von Glasersfeld’s (1995) idea that 
“learning is not a passive receiving of ready-made knowledge but a process of construction in which the 
students themselves have to be the primary actors” (p. 120).

In this framework mathematical tasks pass through three stages: as perceived by students in the beginning 
of their work, as solved by students during their work, and as explained by students on the basis of their 
work. The first stage sounds similar to the first Polya step (understanding the problem). However, taking 
into account students’ understanding the problem, we paid much attention to their perception of the problem 
from a psychological point of view. Our hypothesis was that it could have a significant impact on students’ 
performance in problem solving, and, therefore, should be taken into consideration. The second stage consists 
of four dimensions. Each of them represents a different qualitative characteristic of solving hard problems. 
All characteristics refer to the thinking processes in which students engage. The aim of the second stage was 
to analyse different dimensions and establish their role and impact on thinking processes in problem solving, 
as shown in Figure 2. 

Figure 2. Simplified scheme of problem solving.
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The interrelations between these dimensions are complex and need further investigation, which was another 
aim of the study. They can overlap each other, or even contain one another, influence each other, and, together 
with factors influencing students’ implementation, can change their interrelations with each other. The four 
dimensions formed a dynamic structure within the framework, as shown in Figure 3.

Figure 3. Dynamic structure of interrelations between four dimensions.

Williams (2000) described and categorised students’ abilities to solve unfamiliar challenging problems in 
collaborative work. We focussed mostly on individual student performances, though collaborative work was 
taken into account. We used two forms of problem solving activities: firstly open problems, and secondly 
mathematical situations. For open problems proposed for students we followed the Arsac, Germain, and 
Mante (1988) characterisation:

The statement of the problem is short, so that it can be easily understood, it fosters discovery and all students 
are able to start the solution process. The statement of the problem does not suggest the method of solution, 
or the solution itself, but it creates a situation stimulating the production of conjectures. The problem is set in 
a conceptual domain, which students are familiar with. Thus, students are able to master the situation rather 
quickly and to get involved in attempts of conjecturing, planning solution paths and finding counter-examples 
in a reasonable time.

While solving a certain problem, each student was asked to investigate its “mathematical situation”, with 
his/her own priorities for further inquiry in that problem. Like Brown and Walter (1990), we considered 
“situation”, an issue, which was a localised area of inquiry with features that could be taken as given or 
challenged and modified. Also, we took into account that current learning perspectives for problem solving 
activities in a constructivist framework incorporate three important assumptions (Anthony, 1996):

learning is a process of knowledge construction, not of knowledge recording or absorption;• 
learning is knowledge-dependent; people use current knowledge to construct new knowledge;• 
the learner is aware of the processes of cognition and can control and regulate them.• 

Methodology

In order to identify key points of students’ performance in problem solving and learn more about their strategies 
and relation to knowledge construction we distinguished four qualitative problem solving characteristics: 

FS•  – the first step of solution of a problem;
MI•  – main information extracted from a problem;
G•  – generalisation possibly required for solution of a problem;
C•  – completion of the solution of a problem.

We established quantitative indices of students’ skills for each of the corresponding qualitative characteristics:
S• FS – student’s skills to find the first step of solution of a problem;
S• MI – student’s skills to find out the main information from a problem;
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S• G – student’s skills to make generalisation which possibly could be required for solution of a 
problem;
S• C – student’s skills to complete solution of a problem and make conclusion.

Finally, we introduced a common index SHP – the level of student’s abilities to solve hard problems. We 
define SHP as a variation of AFKS (Yevdokimov, 2006), being considered in the context of a specific learning 
environment where hard problems are to be solved by students.

The teaching experiment methodology consisted of long-term interactions between teacher/researcher 
and individual students. These interactions included interviews and teaching episodes. This methodology 
concentrates on students’ conceptual constructions and their cognitive demands. The main goal was to analyse 
students’ constructions in the problem solving process. Interactions between the teacher/researcher and a 
student were intended to stimulate the student’s mental activity. Interviews and teaching episodes provide 
for intensive interaction between student and teacher, where a teacher assists the student’s developmental 
constructions. 

This teaching experiment was conducted in three parts: an interview part, teaching part, and analysis part. 
It is important to note that development of students’ abilities to solve hard problems is directly connected to 
the teacher’s competence to conduct inquiry activities in a classroom. The teacher has to regulate directions 
of students’ inquiry work into the problem solving process and adapt it to the classroom needs. At the same 
time, “open problems promote the devolution of responsibility from the teacher to students” (Furinghetti & 
Paola, 2003, p. 399). The teacher’s role in this situation, we feel, should follow Mercer’s idea (1995) of “the 
sensitive, supportive intervention of a teacher in the progress of a learner, who is actively involved in some 
specific task, but who is not quite able to manage the task alone” (p. 48).

These three parts formed a phase of the research, a full cycle taking two months. This was repeated four times 
per school academic year to verify students’ conceptual constructions and trace the dynamics of the changing 
qualitative characteristics and their quantitative indices for each student. We calculated these indices at the 
start of the first phase (SFS,0, SMI,0, SG,0, SC,0) and at the end of all phases of the research (SFS,1, …, SC,4 
respectively), as shown in Figure 4.

Figure 4. Structure of the teaching experiment.
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We compared the common index SHP with corresponding indices SFS, SMI, SG, and SC to identify their 
similarities, differences, and mutual influence on each other. During all phases students had been asked to 
work with testing sheets to solve five problems in the form of tasks. They had to carry out certain problem-
solving activities and provide appropriate argumentation for each task (analyse FS, MI, G, or C for a given 
task, but not all characteristics together for each task). At the same time we had the answers for FS, MI, G, 
and C in advance for each task on the testing sheets for teachers’ use only. Average values of the quantitative 
indices of students’ skills for each qualitative characteristic were calculated on the start and finish of each 
phase of the experiment. Below are both detailed descriptions of SFS – the index of the student’s skills to find 
the first step of solution of a problem and SHP – the common index of the student’s abilities to solve hard 
problems.

Structure of SFS

We follow quantitative methods (Yevdokimov, 2006) on the basis of a formula of elementary probability 
for the finite number of events (in our terminology – for the finite number of essential levels of student’s 
performance in problem solving):
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where either pk=1, if a student’s performance was satisfactory, or pk=0, if a student’s performance was 
unsatisfactory, n is a number of levels mentioned above. In the scope of theoretical framework we distinguished 
six such essential levels, that is, n=6 here:

p1 – a student was able to propose or at least make suggestion about the first step;

p2 – a student could explain what he or she had done there;

p3 – this first step leads to the solution of a problem; 

p4 – a student could explain which step of solution should be the next one, in other words, what should 
be the next step of solution on the basis of the first step proposed by a student;

p5 – a student could explain (provide) full solution of a problem on the basis of his or her first step;

p6 – a student provided full solution of a problem, and this solution is the shortest, and can be 
characterised as one of the best for a problem.

Index SFS is not a probability value in the proper way, though it has probabilistic sense. We measured changes 
in SFS in the range between 0 and 1, taking into account such factors as studentss experience, constructivism, 
creativity, and mathematical competence. 

Analogous ideas and approaches we used to estimate SMI, SG, and SC.

Structure of SHP 

To calculate the common index SHP, for each student for a certain task we used the same formula for elementary 
probability for a finite number of events. However, levels in this case were different from SFS. The solution 
of any problem was divided into consecutive steps and the step-by-step schemes provided for teacher’s use 
only.

We evaluated student’s actual suggestion for each step of the solution with 1, if he/she could provide clear 
explanations why he/she did so. Otherwise, a mark for such a step was 0. The formula was the following

,
1
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where N was a number of consecutive steps for a certain task.

Note that N takes different values for each problem and it is also possible for a student to give a different 
correct solution to a problem from the solution that the teacher has for the SHP calculation. In such a case, the 
student’s solution is divided into similar consecutive steps and the same scheme is applied to compute SHP. 
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Findings

Average index evaluations for SFS, SMI, SG, SC, and SHP are given in the Tables 1 and 2 respectively. At first we 
calculated average values for each student at each phase. ΔSFS,k means the difference between two consecutive 
evaluations SFS,k and SFS,k-1, the same notation with other indices. Thus, we could trace dynamics of changes, 
and which characteristics at a certain phase played more significant role than others. We present average 
evaluations for five students only to demonstrate the general tendency – how different problem solving 
characteristics are related each other. The average evaluation for SHP is in Table 2 due to the different nature 
of the index.

Table 1

Average Index Evaluations: SFS, SMI, SG, SC

SFS,0 0.15 SMI,0 0.27 SG,0 0.04 SC,0 0.38

SFS,1 0.21 SMI,1 0.22 SG,1 0.1 SC,1 0.45

ΔSFS,1 0.06 ΔSMI,1 -0.05 ΔSG,1 0.06 ΔSC,1 0.07

SFS,2 0.29 SMI,2 0.31 SG,2 0.18 SC,2 0.42

ΔSFS,2 0.08 ΔSMI,2 0.09 ΔSG,2 0.08 ΔSC,2 -0.03

SFS,3 0.57 SMI,3 0.48 SG,3 0.32 SC,3 0.58

ΔSFS,3 0.28 ΔSMI,3 0.17 ΔSG,3 0.14 ΔSC,3 0.16

SFS,4 0.76 SMI,4 0.68 SG,4 0.55 SC,4 0.84

ΔSFS,4 0.19 ΔSMI,4 0.2 ΔSG,4 0.23 ΔSC,4 0.26

Table 2

Average Index Evaluations: SHP

SHP,0 SHP,1 ΔSHP,1 SHP,2 ΔSHP,2 SHP,3 ΔSHP,3 SHP,4 ΔSHP,4

0.14 0.18 0.04 0.25 0.07 0.36 0.11 0.52 0.16

It is important to note that the common index of problem solving abilities SHP and generalising characteristic 
SG have similar tendencies and dynamic changes. The easiest from students’ point of view was completion of 
solution, characteristic SC, however, it did not overlap with generalising skills in most tasks and, therefore, this 
question needs further investigation. We noticed that, after getting some experience, students’ performance in 
SFS increased significantly but SMI did not. However, other indices depended strongly on increasing SMI.

We distinguished three basic strategies which were used by students in their attempts to solve different 
problems. We called them: the “Blind search”, the “Going along the fairway” strategy, and the “Conscious 
search to find main information”. With “Blind search”, students made stochastic attempts to solve a problem, 
they were not able to explain their suggestions and preferences. Very often students tried to check all possible 
situations in a problem. In “Going along the fairway” they tried to apply the last method that they had 
previously studied. The third strategy took the leading place in students’ work during the third and fourth 
phases. We observed that, in the case of students’ successful answers to the question about the MI of a 
problem, all characteristics were correctly specified in most of other problems. Moreover, in some cases, not 
universally, but quite often, students began their analysis with MI, even if the questions were about other 
characteristics.
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Concluding Remarks

Analysis of the qualitative characteristics and their quantitative indices gives an opportunity to develop 
knowledge of the problem-solving process from a complex-mental-activity point of view. Schoenfeld (1985) 
has noted a widespread belief that only the brightest students can succeed at problem solving. Hembree 
(1992.) argued that this belief is not well-founded. Our results support Hembree’s conclusion. We noticed 
that good mathematics students, though not the brightest ones, after gaining more experience in problem-
solving, understand that there are few options for the first step in solving any problem. They can distinguish 
such situations, though not all students are able to explain their understanding clearly. Furthermore, our 
results show that illumination and insight do not have any significant impact on students’ performance despite 
the fact that students could not always explain why they made a step in a certain direction. We are inclined 
to think that students and teachers exaggerate the importance of the “Ah ha! moment” in problem-solving 
activities. This experiment showed that both qualitative characteristics and their quantitative indices may be 
used as a powerful diagnostic tool in work with gifted and talented students, for the further development their 
conceptual constructions, and improvement of their problem-solving skills. 
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