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This paper reports on a project aimed at developing pedagogical tools for intervention 

in the number learning of low-attaining 3rd- and 4th-graders. Approaches to 

instructional design and intervention are described, and the use of the design research 

methodology is outlined. A major outcome of the project, an experimental framework 

for instruction, is described. The framework consists of five aspects: number words 

and numerals, structuring numbers to 20, conceptual place value, addition and 

subtraction to 100, and early multiplication and division. The descriptions of aspects 

include a discussion of low-attaining students’ knowledge and difficulties, and details 

of instructional approaches developed in the project. 

The Numeracy Intervention Research Project (NIRP) has the goal of developing 

pedagogical tools for intervention in the number learning of low-attaining third- and 

fourth-graders (8- to 10-year-olds). This paper reports on the NIRP by providing 

overviews of (a) the approach to intervention, (b) the use of a design research 

methodology, and (c) an experimental instructional framework consisting of five key 

aspects. 

Approach to Intervention 

A significant proportion of students have difficulties learning basic arithmetic 

(Louden et al., 2000). This limits their development of numeracy (McIntosh, Reys, & 

Reys, 1992; Yackel, 2001). Low-attainment is of particular concern in the context of 

the emphasis on numeracy, both nationally and internationally (e.g. The national 

numeracy project: An HMI evaluation, 1998; Numeracy, a priority for all, 2000). 

Furthermore, there are very few instructional programs to address numeracy 

difficulties and very few Australian schools systematically address this problem 

(Louden et al., 2000). Hence there are calls “to identify effective remedial approaches 

for the various identified weaknesses” (Bryant, Bryant, & Hammill, 2000, p. 174) and 

to develop approaches from the research-based reforms recommended for general 

mathematics education (Rivera, 1998). Researchers have developed programs of 

intervention in early number learning (Dowker, 2004; Gervasoni, 2005; Pearn & 

Hunting, 1995; Wright, Martland, Stafford, & Stanger, 2006; Young-Loveridge, 

1991) focusing on topics such as counting and early addition and subtraction. The 

NIRP aims to extend this work with a focus on basic whole number arithmetic 

including reasoning with numbers in the hundreds and thousands, multidigit addition 

and subtraction, and early multiplication and division. 

Organising by key aspects. Recent intervention programs have described early 

number knowledge in terms of components (Dowker, 2004) and domains (Clarke, 

McDonough, & Sullivan, 2002). These descriptions highlight the idiosyncratic nature 

of students’ number knowledge (Gervasoni, 2005) and learning paths (Denvir & 

Brown, 1986). In this paper we use a framework approach (Wright et al., 2006) to set 
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out five key aspects of number learning that we regard as important for intervention 

with 3rd- and 4th-graders. Our approach involves developing instructional activities 

relevant to each of these key aspects. In this approach, constructing a framework of 

key aspects is important in developing a domain-specific theory for intervention 

instruction. Further, this framework can be applied to all students and can inform 

classroom instruction. 

Instructional design. Progressive mathematisation refers to the development from 

informal, context-bound thinking to more formal thinking (Beishuizen & Anghileri, 

1998; Gravemeijer, 1997; Treffers, 1991). As in the emergent modelling heuristic 

(Gravemeijer, Cobb, Bowers, & Whitenack, 2000), instructional design involves 

anticipating a potential learning trajectory, and devising an instructional sequence of 

tasks which foster students’ progressive mathematisation along the trajectory, through 

levels of thinking from informal to formal. Particular settings, such as manipulative 

equipment or notation systems, can have an important role in an instructional 

sequence. A setting can be established as a context for students’ initial context-

dependent thinking, and then become a model for more independent numerical 

reasoning, thus mediating the crucial development from concrete toward more 

abstract thinking (Gravemeijer, 1997). An instructional sequence consists of 

instructional procedures, each of which serves to incrementally distance the student 

from the materials, advance the complexity of the task, and potentially raise the 

sophistication of the student’s thinking. Detailed assessment of the student’s 

knowledge informs the teacher’s selection of instructional procedures. Instruction 

focuses on engaging the student in independent, sustained thinking, and observational 

assessment enables tuning instruction to the cutting edge of the student’s knowledge 

(Wright et al., 2006). 

Approach to number instruction. Our approach to instruction emphasises flexible, 

efficient computation, and strong numerical reasoning (Beishuizen & Anghileri, 1998; 

Heirdsfield, 2001; Yackel, 2001). Mental computation, in particular, is foundational 

for efficient computation, numerical reasoning, and number sense (McIntosh et al., 

1992; Treffers, 1991). Learning builds from students’ own informal mental strategies 

(Beishuizen & Anghileri, 1998; Gravemeijer, 1997). However, students need to 

develop flexible, efficient, mathematically sophisticated strategies. Low-attaining 

students often use inefficient count-by-ones strategies, and error-prone rote 

procedures, and depend on supporting materials or fingers (Gray, Pitta, & Tall, 2000; 

Wright, 2001). Hence, intervention instruction needs to develop students’ number 

knowledge to support non-count-by-ones strategies, and to move students to 

independence from materials. 

Methodology 

The NIRP adopted a methodology based on design research (Cobb, 2003; 

Gravemeijer, 1994), consisting of three one-year design cycles. The NIRP aimed to 

develop pedagogical tools for intervention, consisting of a framework, assessment 

tasks, and instructional sequences. Each design cycle consisted of (a) initial 

development of the pedagogical tools, (b) use of the tools in an intervention program 

with teachers and students, (c) analysis of the learning and teaching in the program, 

and (d) refinement of the tools based on the analysis. Within each cycle, analysis and 

development were on-going, in meetings of the researchers and project teachers, in 

analysis of assessments, and in teachers’ daily lesson planning. The analysis of the 

learning and teaching in the intervention program is informed by a teaching 
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experiment methodology (Steffe & Thompson, 2000). Interview assessments and 

instructional sessions were videotaped, providing an extensive empirical base for 

analysis. The approach to the development of intervention programs described in this 

paper is an appropriate response to Ginsburg’s (1998) call for teaching experiments 

focusing on students with learning difficulties. 

The Study 

The intervention program for each year involved eight or nine teachers, each from 

a different school, across the state of Victoria. In each school, 12 students were 

identified as low-attaining in arithmetic, based on screening tests administered to all 

third- and fourth-graders. In each school (a) in term 2, these 12 students were assessed 

in individual interviews; (b) in term 3, eight of the low-attaining students participated 

in intervention teaching cycles; and (c) in term 4, the 12 students were again assessed 

in individual interviews. The teaching cycles involved teaching sessions of 30 minutes 

duration, for four days per week, for 10 weeks. Two students were taught as 

singletons and six as trios, and all of the instructional sessions with singletons were 

videotaped. Across the three years of the project, in each of 25 schools, the project 

teacher assessed 300 low-attaining students, each on two occasions, taught 50 students 

individually and 150 students in trios. 

Development of the Instructional Framework 

Through the cycles of design research, the framework of key aspects of 

knowledge developed from four considerations. Firstly, areas of significance were 

identified in our analysis of low-attaining students’ number knowledge and 

difficulties, areas that seem to be characteristic of what successful students can do and 

what low-attaining students cannot do. Secondly, these areas were clarified in making 

a coherent framework for teachers to use for analysing assessments and profiling 

students’ learning needs. Thirdly, the key aspects became further defined as the key 

instructional sequences and their associated settings emerged. Fourthly, the key 

aspects were refined in articulating a coherent framework for instruction. The 

framework is experimental in the design research sense – it is intended to be further 

trialled, analysed, and developed. 

The resulting instructional framework consists of the following five aspects: (A) 

Number Words and Numerals; (B) Structuring Numbers 1 to 20; (C) Conceptual 

Place Value; (D) Addition and Subtraction 1 to 100; and (E) Early Multiplication and 

Division. 

Experimental Instructional Framework 

For each of aspects A to D, we describe (a) the significance of the aspect; (b) low-

attaining students’ knowledge and difficulties; and (c) instructional sequences. Due to 

space limitations, aspect E is not described in this paper. 

Aspect A: Number Words and Numerals 

Low-attaining students’ knowledge and difficulties. Early number curricula focus 

on number word sequences (NWS) to 20, and to 100, and learning to read and write 2-

digit numerals. Students’ early difficulties are well-documented (e.g., Fuson, 

Richards, & Briars, 1982). Classroom instruction on NWSs and numerals tends to 

decrease as students progress through school. However, low-attaining third- and 
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fourth-graders have significant difficulties with these areas (Hewitt & Brown, 1998). 

Errors with NWSs in the range 1 to 100 include: (a) “52, 51, 40, 49, 48…” and (b) 

“52, 51, 49, 48…”. Students are aware of the chains of number words in each decade 

– 41 to 49 and 51 to 59, and link these chains incorrectly when going backwards 

(Skwarchuk & Anglin, 2002). Errors with NWSs in the range 100 to 1000 occur at 

decade and hundred numbers, for example: (a) “108, 109, 200, 201, 202…”; (b) “198, 

199, 1000, 1001…”; and (c) “202, 201, 199, 198…” (Ellemor-Collins & Wright, in 

press). When students respond correctly on these tasks, in many cases they lack 

certitude. Knowledge of sequences of tens off the decade is an important part of 

knowledge of base-ten structures (Ellemor-Collins & Wright, in press), and is a 

prerequisite for mental jump strategies (Fuson et al., 1997; Menne, 2001). Some low-

attainers cannot skip count by tens off the decade. Given the task “Count by tens from 

24”, responses included: (a) “24, 25, 20”; (b) “24, 30, 34, 40”; (c) “24…34…44” with 

each ten counted by ones subvocally; and (d) “I can’t do that”. As well, there is a 

range of significant errors with sequences of tens beyond 100 (Ellemor-Collins & 

Wright, in press). Some 3rd- and 4th-graders make errors with 3-digit and 4-digit 

numerals involving zeros (Hewitt & Brown, 1998): 306 is identified as “360”; 6032 is 

identified as “6 hundred and 32”, or "60 thousand and 32”; and 1005 is written “10 

005”. 

Instruction in number words and numerals. Facility with number word sequences 

and numerals is important, and requires explicit attention for low-attainers (Menne, 

2001; Wright et al., 2006). This aspect includes identifying and writing numerals to 

1000 and beyond. Instruction focuses on reciting and reasoning with number word 

sequences and numeral sequences, without structured settings such as number lines or 

base-ten materials. Students develop knowledge of the auditory and visual patterns, 

somewhat separate from numerical reasoning about quantity and position (Hewitt & 

Brown, 1998; Skwarchuk & Anglin, 2002). We have found that explicit instruction 

focusing on bridging 10s, 100s and 1000s, forwards and backwards, is productive. 

Saying sequences by tens and hundreds, on and off the decade, supports development 

of place value knowledge. Saying sequences by 2s, 3s, and 5s, on and off the multiple, 

supports development of multiplicative knowledge. Students can and should learn 

number word sequences and numerals in a number range well in advance of learning 

to add and subtract in that range because familiarity with a range of numbers 

establishes a basis for meaningful arithmetic (Wigley, 1997). 

Exemplar instructional sequence: the numeral track. The numeral track is an 

instructional device consisting of a sequence of ten numerals, each of which is 

adjacent to a lid which can be used to conceal the numeral (Wright et al., 2006). In the 

instructional sequence, first the lids are opened sequentially, and the student names 

each numeral in turn, after seeing the numeral. Second, when the sequence is familiar, 

the student’s task is to name each numeral in turn, before seeing the numeral. In this 

case, the opening lids enable self-verification. Third, the number sequence can be 

worked backwards. Finally, more advanced tasks can be used. For example, one lid is 

opened and the teacher points to other lids for the student to name: the number before, 

the number two after, and so on. In this setting, learning about NWSs supports and is 

supported by learning about sequences of numerals. The teacher selects the sequence: 

bridging 110, a tens sequence off the decade, a 2s sequence, and so on. The teacher 

can observe a student’s specific difficulty, and finely adjust the instructional tasks. 

The lids allow incremental distancing from the material and internalisation of the 

sequence.  
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Aspect B: Structuring Numbers 1 to 20 

Facile calculation in the range 1 to 20. Learning arithmetic begins with learning 

to add and subtract in the range 1 to 20. Students’ initial strategies involve counting-

by-ones (Fuson, 1988; Steffe & Cobb, 1988) and developing this facility is an 

important aspect of early number learning. Students can then develop strategies more 

sophisticated than counting by ones, such as adding through ten (eg., 6 + 8 = 8 + 2 + 

4), using fives (6 + 7 = 5 + 5 + 1 + 2), and near-doubles (eg., 6 + 7 = 6 + 6 + 1). 

Developing these strategies builds on knowledge of combining and partitioning 

numbers (Bobis, 1996; Gravemeijer et al., 2000; Treffers, 1991). Efficient calculation 

also involves knowledge of additive number relations, such as commutativity (8 + 9 = 

9 + 8), and inversion (15 + 2 = 17 implies that 17 – 15 = 2). The development of 

efficient, non-count-by-ones calculation in the range 1 to 20 is important. Counting-

by-ones can be slow, and error-prone. Further, facile calculation promotes number 

sense and numerical reasoning (Treffers, 1991), and develops a part-whole conception 

of numbers (Steffe & Cobb, 1988), providing a basis for further learning such as the 

construction of units of 10 and multiplicative units (Cobb & Wheatley, 1988). 

Low-attaining students’ knowledge and difficulties. Low-attaining 3rd- and 4th-

graders typically will solve addition and subtraction tasks in the range 1 to 20 by 

counting on and counting back (Gray et al., 2000; Wright, 2001). As well, they will 

not necessarily use the more efficient counting strategy, solving 17 – 15 for example, 

by making 15 counts back from 17 and keeping track on their fingers. They do not 

seem to partition numbers spontaneously when attempting to add or subtract. These 

students typically have difficulty with tasks such as stating two numbers that add up 

to 19. They might know all or most doubles in the range 1 to 20, but will not use a 

double to work out a near-double addition (6 + 7). As well, they might solve without 

counting, addition tasks with 10 as the first addend (10 + 5) but will not apply the ten 

structure of teen numbers (14 is 10 + 4) to solve addition (14 + 4) or subtraction (15 – 

4), and will not use adding through 10 to solve tasks such as 9 + 5. This preference for 

counting-by-ones has been explained as a preference to think procedurally (Gray et 

al., 2000). 

Instruction in structuring numbers 1 to 20. The arithmetic rack (Treffers, 1991) is 

an important instructional device, enabling flexible patterning of the numbers 1 to 20 

in terms of doubles, five, and ten. Instruction proceeds in three phases: (a) making and 

reading numbers; (b) addition involving two numbers; and (c) subtraction involving 

two numbers (Wright et al., 2006). In each phase, the teacher advances the 

complexity, from tasks with smaller numbers and more familiar structures, to tasks 

with larger numbers and less familiar structures. In each phase, the teacher also uses 

screening and flashing to progressively distance the student from the setting. The 

student is actively reasoning, in the context of the structured patterns. The intention is 

that activity with the rack is increasingly internalised and the student shifts from 

reasoning with numbers as referents-to-the-beads, to numbers as independent entities 

(Gravemeijer et al., 2000). Instruction with the arithmetic rack can overcome low-

attainers’ reticence to relinquish counting-by-one strategies. 

Aspect C: Conceptual Place Value 

Multidigit knowledge. Research evidence supports building multidigit arithmetic 

on students’ informal understandings of number, and emphasizing mental strategies 

with 2-digit numbers (Beishuizen & Anghileri, 1998; Fuson et al., 1997; Yackel, 
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2001). Efficient mental strategies require sound knowledge of structures in multidigit 

numbers such as: (a) additive place value (25 is 20 and 5); (b) jumping by ten, on and 

off the decade (40 + 20 = 60, 48 + 20 = 68);  (c) jumping within and across decades  

(68 + 5 = 68 + 2 + 3 = 73); and (d) locating neighbouring decuples (linking 48 + 25 to 

50 + 25) (Ellemor-Collins & Wright, in press; Heirdsfield, 2001; Menne, 2001; 

Yackel, 2001). These structures are based on the decade patterns and units of ten. 

Other important structures include doubles and halves: double 25 is 50, double 50 is 

100. Together these structures form a rich network of number relations, the basis of 

flexible and efficient computation (Foxman & Beishuizen, 2002; Heirdsfield, 2001; 

Threlfall, 2002). Instruction on these multidigit structures can be distinguished from 

formal place value instruction. Thompson and Bramald (2002), for example, observe 

that students’ intuitive strategies depend on quantity value, the informal additive 

aspect of place value, which they distinguish from column value, the formal written 

aspect of place value. Place value tasks involving manipulation of numerals and 

knowing column value are problematic for many students, especially low-attainers 

(Beishuizen & Anghileri, 1998; Thompson & Bramald, 2002). Younger students 

reason about numbers first in terms of verbal sequences and quantities, rather than 

written symbols, so addition by formal manipulations of symbols is not necessarily 

meaningful for these students (Cobb & Wheatley, 1988; Treffers, 1991). For example, 

a student might understand the result of jumping by ten, but not of adding one in the 

tens column. Where regular place value instruction is intended to support the 

development of standard, written algorithms, we propose conceptual place value as an 

approach to support the development of students’ intuitive arithmetical strategies. 

Low-attaining students’ knowledge and difficulties. Low-attaining third- and 

fourth-graders typically will not increment or decrement by ten off the decade when 

solving 2-digit  addition  and  subtraction  tasks.  In  a  task  presenting,  with  base-

ten  materials, 48 + 2 tens and 5 ones, some low-attainers find the total by counting by 

ones from 48. Other students will attempt to use a split strategy (40 + 20 and 8 + 5) to 

solve these tasks but will have difficulty recombining tens and ones (Cobb & 

Wheatley, 1988). These students either lack place value knowledge or are unable to 

use place value knowledge in dynamic situations, that is, situations that involve 

increasing or decreasing numbers by ones, tens or hundreds. We regard these 

difficulties as symptomatic of a lack of important knowledge about multidigit 

numbers (Ellemor-Collins & Wright, in press). 

Instruction in conceptual place value. Conceptual place value encompasses 

instructional sequences that develop knowledge of the structure of multidigit numbers, 

as a foundation for mental computation. The main instructional sequence involves 

flexibly incrementing and decrementing by ones and tens, and later hundreds and 

thousands, in the context of base-ten materials. Two important settings are: (a) 

bundling sticks and (b) dots on laminated card organised into ten strips and hundred 

squares. These seem to be more authentic and hence more useful than MAB blocks. 

Instructional tasks include firstly, building 2-digit numbers, and then incrementing 

and decrementing by one ten, two tens, one ten and two ones, and so on. The teacher 

incrementally distances the student from the setting. Initially, the material is visible. 

The student answers, and then might reorganise the tens and ones to verify their 

answer. As the instructional sequence develops, the material is screened and the 

screens are removed to enable verification. This instruction elicits reasoning about 

quantities in the range 1 to 100, thus providing a basis for 2-digit addition and 

subtraction using jump strategies (aspect D). As well, this instruction is extended to 
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flexibly incrementing and decrementing 3- and 4-digit numbers, by ones, tens and 

hundreds. In this way, students’ first learning of place value is strongly verbal and 

occurs in an additive sense. We have also found that Arrow Cards (Hewitt & Brown, 

1998; Wigley, 1997) can be very useful in further supporting this learning. 

Aspect D: Addition and Subtraction to 100 

Flexible, efficient multidigit computation. Developing facile mental strategies for 

addition and subtraction involving two 2-digit numbers is a critically important goal 

of arithmetic learning in the first three or four years of school. This lays a strong 

foundation for all further learning of arithmetic, including multiplication and division, 

fractions and decimals, and so on. As well, strong mental strategies will support 

learning of the standard written algorithms and efficient use of calculators in 

mathematical problem solving (Beishuizen & Anghileri, 1998). Two main categories 

of efficient strategies are jump strategies and split strategies. Variations and 

alternatives abound. (Foxman & Beishuizen, 2002; Fuson et al., 1997; Klein, 

Beishuizen, & Treffers, 1998; Thompson & Bramald, 2002). All these strategies 

involve jumping in tens and jumping through ten. Jumping through ten can be used 

for example, to solve 68 + 7 as 68 + 2 + 5, and more generally involves  adding and  

subtracting to and from a decuple  (60 + 8, 47 + x = 50, 74 – x = 70, 60 – 4). 

Low-attaining students’ knowledge and difficulties. As with tasks involving base-

ten materials described in aspect C above, some low-attaining third- and fourth-

graders seem to interpret written tasks such as 38 + 24 and 63 – 24 as an instruction to 

make 24 counts forwards or backwards respectively (Wright, 2001). Also, low-

attainers frequently try to use a split strategy for written tasks, but have difficulty 

recombining tens and ones (Beishuizen, Van Putten, & Van Mulken, 1997; Fuson et 

al., 1997). As well, when solving a task such as 46 + 53, by adding 40 and 50 and 6 

and 3 (split strategy), they will typically count-on to work out each of the two sums 

(40 + 50 and 6 + 3). These students do not know about jumping in tens and jumping 

through ten to add or subtract in the range 1 to 100 (Menne, 2001). Research suggests 

that most successful students use jump strategies, whereas most low-attainers use split 

strategies; further, low-attainers who do use jump have more success and flexibility 

than those who use split (Beishuizen et al., 1997; Foxman & Beishuizen, 2002; Klein 

et al., 1998). As well, students who have been taught place value in the traditional 

way, are likely to have a preference for split strategies. 

Instruction in addition and subtraction to 100. Incrementing and decrementing by 

ten is one important prerequisite for learning to use jump strategies in the range 1 to 

100. A second is having facile strategies for addition and subtraction in the range 1 to 

20 (Menne, 2001). Our experience is that low-attainers who are facile in the range 1 to 

20 require explicit instruction in applying this knowledge when adding and 

subtracting two 2-digit numbers. For this instruction we have found it useful to use ten 

frame cards in two forms – a ten frame card for each of the numbers 1 to 9, and full 

ten frame cards for the decuples. In this setting, 38 can be shown using 3 ten-cards 

and one eight-card. The ten frame cards used in this way, can supports students’ 

reasoning about adding and subtracting to and from a decuple. This approach can be 

extended firstly to addition and subtraction involving a 1-digit and a 2-digit number 

(64 + 3, 78 + 6, 47 – 4, 82 – 7) and finally to addition and subtraction involving two 

2-digit numbers. We use a notation system in conjunction with mental strategies. The 

notation is used to record the mental strategy rather than providing a means of solving 

the task. Notation supports reflection and communication, and is important for 
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increasing robustness, curtailment and flexibility (Gravemeijer et al., 2000; Klein et 

al., 1998). We have found four notation systems useful. The empty number line 

notation (Klein et al., 1998) is used for jump and related strategies. Also used for 

jump strategies is the simple arrow notation (48 + 25, 48�50, 50�70, 70�73). The 

so-called drop-down notation is used for split strategies and notation involving a 

progression of number sentences (arithmetical equations) can be used for either jump 

or split strategies. 

Conclusion 

An important intention of the framework is to bring together aspects of number 

variously identified as areas where low-attaining students do not progress. A second 

important intention is to bring together powerful instructional sequences specific to 

each of those aspects. The consistent approach to instructional design in terms of 

progressive mathematisation promotes coherence across the framework. Further, by 

and large, instruction in the aspects proceeds concurrently, and the teacher makes 

connections between the aspects (Treffers, 1991). The goal, overall, is the coherent 

development of students’ facility with whole number arithmetic. 

The experimental framework initiates further lines of inquiry at four levels: (a) 

analyse further, low-attaining students’ learning within each aspect; (b) refine the 

instructional sequences and their connections; (c) assess students’ and teachers’ 

responses to intervention programs based on the framework; (d) Clarify the design 

research approach to developing pedagogical materials for intervention. 
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