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This paper reports how high school students from two different schools used patterns and 

generalisations while working on some selected problems. The results show that the initial 

identification of a pattern was crucial in determining the type of symbolic generalisation, 

which for successful students’ seemed to proceed through four sequential stages.  

Generalisation is an important aspect in mathematics that permeates all branches of the 

subject and is a feature highlighted in the teaching of the subject at practically all levels. 

For example, in Arithmetic a child may generalise that multiplication of a whole number 

by 5 gives a product ending in 0 or 5. As a statement that is true for all members of some 

set of elements, theorems in geometry can be considered as generalisations (Mason, 1996). 

On the other hand, in algebra, we commonly use variables, which Schoenfeld and Arcavi 

(1988) described as general tools in the service of generalisation. So, what do we mean by 

generalisation? 

Several attempts have been made to explain the term generalisation. Kaput (1999) 

claimed that generalisation involves deliberately extending the range of reasoning or 

communication beyond the case or cases considered by explicitly identifying and exposing 

commonality across the case or the cases. He added that this resulted in lifting the 

reasoning or communication to a level where the focus is no longer on the cases or 

situations themselves but rather on the patterns, procedures, structures, and relations across 

and among them, which in turn become new, higher-level objects of reasoning or 

communication. This hierarchical aspect is similar to what Sfard (1991) proposed in her 

theory of reification, in which processes at one level become the new objects at another 

level. The idea of creating new objects for subsequent actions was also used by Davidov 

(1972/1990) who described generalisation as “inseparably linked to the operation of 

abstracting” (p. 13). The link between generalisation and abstraction was also highlighted 

by Dreyfus (1991). However, Dreyfus used the term generalisation as the recognition of 

some general characteristics in a set of mental objects and claimed that generalisation 

involves the expansion of an individual’s knowledge structure. Regarding cognitive 

activities involved in generalising, Harel and Tall (1991) made a distinction between three 

types of generalisations, (a) expansive generalisation – one that extends the students’ 

existing structure without requiring changes in current ideas; (b) reconstructive 

generalisation – one that requires the reconstruction of the existing cognitive structure; and 

(c) disjunctive generalisation – one which adjoins the new particular as an extra case or 

generates a new structure distinct from the others.  

On the other hand, Radford (1996) claimed that a goal in generalising geometric-

numeric patterns is to obtain a new result. This new result depends on the observer’s 

conceptualisation of the mathematical objects and the relations involved. Radford added 

that accordingly, generalisation is not a concept but rather a procedure and that a 

generalisation procedure g arrives at a conclusion α, starting from a sequence of “observed 

facts”,  a1, a2,…, an, which can be written as:  a1, a2, ..., an → α (α is derived from a1, a2, 

..., an). The most significant aspect of the generalisation is its logical nature that makes 

possible the conclusion α.  
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It should be noted that inductive reasoning, which is commonly used in generalising 

from patterns, does not necessarily lead to valid conclusions. If there are flaws in the logic 

then certainly the generalisation would not be valid, and so generalisation as a didactic 

strategy cannot avoid the question of validity. Burton (1984) claimed that to become robust 

a generalisation must be tested until it is convincing so that it moves from being personal 

to public. Burton also mentioned that both inductive learning and deductive learning 

involve generalising activities. Her view is that inductive learning involves specialising, 

conjecturing, and generalising in that order, which is the reverse order for deductive 

learning.  

Although generalisation may seem to be omnipresent in school mathematics, there are 

pedagogical issues that cannot be ignored. In her research, Lee (1996) found that 

generalising activities led to three types of conceptual obstacles. First, there were obstacles 

at the perceptual level, which concerned with seeing the actual pattern. Second, there were 

obstacles at the verbalising level, which involved expressing the pattern clearly. Third, 

there were obstacles at the symbolisation level, for example using a variable n in a general 

expression. Thus, generalisation in school mathematics is a very important aspect that 

needs to be carefully investigated. Accordingly, this study focused on how secondary 

students used patterns to help them generalise and what were some of their related 

conceptual difficulties? 

Methodology 

The study reported in this paper is part of a larger study investigating students’ use of 

algebraic thinking in geometrical contexts. The study took place in two large Midwestern 

high schools in the United States. One geometry class was selected from each of the two 

high schools: School X and School Y. There were 21 students in the class from School X 

and 18 students in the class from School Y. The two classes were observed for three 

months and twelve lessons from each class were videotaped. Three students were selected 

from each of the two classes based on the results of an algebra test, which was developed 

in conjunction with the classroom teachers of these two classes and three other experts in 

the field. Andy, Betty, and Melanie were the focus students from School X whereas Pete, 

Kristina, and Abby were from School Y (all names are pseudonyms). Andy and Kristina 

were more able students whereas Betty and Melanie were weaker students from the 

sample. Each of the six students was interviewed four times for about 40 minutes each 

time. The interviews were audiotape recorded and then transcribed. The students were 

asked to solve some problems involving certain aspects of patterns and generalisations. 

The problems were asked sequentially, in the different interview sessions, as given in the 

Results section below. The questions were read out to the students and additionally a 

written version was provided to them. Seven problems that involved some aspect of 

generalisation in a geometrical context were used with the students. The problems were 

selected based on the topic coverage in the selected classrooms. Problem 1 has been 

adapted from the one by Swafford and Langrall (2000) and Problem 7 from the one used 

by Krutetskii (1976).  

Results 

In this section, the focus students’ generalisation approach in the context of the seven 

problems is discussed sequentially. The results for the students’ performance show some 

interesting features. 
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Problem 1 
 

How many small squares are there in the border of this 5×5 square (square drawn on a rectangular 

grid)? How many are there in a 6×6 square? How many are there in a 10×10 square? How many would 

there be in a square of side n×n? If there are 76 border squares in square grid, what is the size of the 

grid? 

     

     
     

     
     

 

In this problem the square grid provides a geometrical context for an algebraic 

generalisation. The three students from school X used different strategies to find the 

number of border squares for the 5×5 square grid. Andy did it mentally and later explained 

that he added 3 + 3 + 5 + 5 to get 16. Betty counted the squares one by one and then wrote 

5, 3, 5, and 3 along the border of the grid. This showed that her strategy of using 5 + 3 + 5 + 3 

was somewhat similar to Andy’s. Melanie responded very quickly that the answer was 20, 

which was incorrect. When asked to check the answer by actual counting, she was puzzled 

that it was 16. She did not show any strategy for getting the answer other than by counting. 

For a 6×6 grid, Andy did not follow his strategy from the previous part. He said the 

answer was 25 and added that for a 10×10 it was 81. For an n×n grid he said it was (n-1)². 

This clearly showed that Andy was not using his previous strategy. He did not mention 

why he chose (n-1)², but it seems that he was mislead by the number of border squares in 

the 5×5 grid as also being (5-1) 2 . On prompting, he changed his answer and was able to 

come up with the correct generalisation of 4(n-1). He was able to use this formula for the 

inverse problem to find the size of the grid for which the number of border squares was 76. 

Betty stuck with her strategy and had no problem getting the answer for a 6×6 or 10×10 

grid. She was eventually able to write down the answer for an n×n grid. She wrote N + N + 

(N-2 + N-2) = 4N-4. Betty was not concerned about the use of N instead of n in the 

expression. She needed some prompts to be able to set up an equation and solve it to get 

the size of the grid for which the number of border squares was 76. Melanie could not 

follow through to get the answer for a 6×6 grid. She thought that it might be 16 + 6 = 22. 

That is, she thought of adding one additional row of 6 squares to the previous answer of 16 

for a 5×5 grid. She could not get to a 7×7 or 10×10 grid. She said she could not do it 

without a diagram. After several prompts, she was able to finally generalise to 4n-4 for an 

n×n grid. However, for the inverse problem, she could not get the size of the grid for 

which the number of border squares was 76.  

 From school Y, Pete started this problem by actually counting the number of squares 

in the 5×5 grid. Since no diagram was given for a 6×6 grid, he knew that he had to be 

more systematic. His revised strategy was to add 5 + 5 + 6 for the 5×5 grid, thinking of the 

6 as 3 + 3. He used the same strategy for a 6×6, 10×10, and also for the general case n×n. 

For this latter case, he wrote 2n + (n-2)×2, which he simplified to 4n-4. For getting the 

size of the grid for 76 border squares, he wrote 76 + 4 = 80, then he wrote 80/4 = 20, to say 

that the size of the grid was 20×20. Kristina and Abby were able to get all of the answers 

and they had very similar strategies for getting the generalised value of 4n-4 for the n×n 

grid. However, for finding the size of grid with 76 border squares, Kristina just substituted 

20 for n to get the answer. This suggested a more trial and error strategy, whereas Abby 

actually set up an equation and solved for n. 
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Problem 2 
 

What is the sum of the interior angles in a triangle? From any vertex, we can divide a quadrilateral into 

two triangles. What is the sum of the interior angles in a quadrilateral? What is it for a pentagon, 

hexagon, and a decagon? What would it be for a polygon with n sides? 

In this problem, the students had to know the angle sum of a triangle and the names of 

the polygons up to ten sides. The algebraic skills included the identification of a pattern 

and subsequently writing down the generalisation from the pattern. All of the focus 

students except Melanie were able to find the sum of the interior angles in a quadrilateral, 

pentagon, and hexagon by actually drawing such a figure and then counting the number of 

triangles they could get by drawing diagonals from one vertex. They had no problem 

generalising to a polygon with ten sides, even though a diagram was not used. Eventually 

all of them, except Melanie, were able to get the result that for a polygon with n sides the 

sum of the interior angles is (n-2)×180°. Melanie needed some help with the pentagon and 

hexagon before writing down the angle sum. For a decagon she did not do any calculation 

but used an additive strategy and counted on from a hexagon, which implied that she had 

noted a pattern in her responses, but was not quite able to formalise it.  To get the result  n-

2) ×  180 for a polygon of n sides, a table of values for number of sides and the 

corresponding angle sum was drawn for her. It was only when this scaffolding was done 

that she was able to follow the pattern and come up with the generalisation. It seemed that 

the organisation of the results in a tabular form was important for Melanie in triggering the 

identification of the pattern.  

 

Problem 3 

What is the relationship between an interior and an exterior angle of a triangle? How many pairs of 

interior and exterior angles do you have in a triangle? What is the sum of all of the interior and exterior 

angles of a triangle? What is the sum of the exterior angles of a triangle? What is the sum of all of the 

exterior angles in a quadrilateral? A pentagon? A hexagon? A polygon with n sides? 

The main geometrical concepts in this problem are that of interior and exterior angles. 

The students had to understand that the sum of an interior and the corresponding exterior 

angles in a polygon is 180°; and that if they knew the sum of all of the interior angles in a 

polygon then the sum of the exterior angles could be found by subtracting the sum of the 

interior angles from the sum of all of the interior plus exterior pairs. The students should 

then have been able to generalise from this result. 

Andy was able to follow the argument and he got the sum of the exterior angles of a 

triangle, a quadrilateral, and a pentagon easily. He was even able to do it for a decagon and 

although he guessed that the answer had to be 360° for any polygon, he actually did the 

calculation for a polygon with n sides to confirm his guess. Betty was able to do it for a 

triangle, quadrilateral, and for a decagon as well. Although she guessed that the result 

should be 360° for any polygon, she was not actually able to do the calculations to justify 

the result for a polygon with n sides. Melanie, on the other hand, had some difficulties 

following the argument even for a triangle. After some prompting, she was able to do it for 

a quadrilateral and a pentagon but not for a decagon. However, she guessed that the sum of 

the exterior angles might always be 360° for any polygon. She was not able to do the actual 

calculation to justify the answer.  

All of the three students from school Y were able to follow the arguments and were 

able to get the exterior angle sum for a triangle, quadrilateral, pentagon, and the decagon 
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easily. They guessed early that the sum of the exterior angles in any polygon would be 

360°. They all were able to do the calculation for a polygon of n sides to show that the sum 

of the exterior angles did not depend on the number of sides of the polygon and that it was 

always 360°. While checking for understanding, it was noted that the students had 

difficulty in applying their knowledge about the sum of the exterior angles to find the 

number of sides of a regular polygon if the size of one exterior angle was known. Although 

the students knew what a regular polygon was, none of them was able to solve such a 

problem.  

 

Problem 4 

The equation of a line is y = 3x + 5. Write down the equation of another line having the same slope as the 

given line. What would be the general form of the equation of a line having the same slope as the given 

line? 

This problem refers to the equation of a line in the slope-intercept form. The students 

were expected to know that in coordinate geometry, the equations of lines having the same 

slope varied only in the value of the intercepts. All of the six focus students were able to 

identify the slope of the line as 3. More specifically, Andy, Betty, and Abby wrote 3/1 for 

the slope. This seemed to be a common practice for writing down the slope of a line from 

its equation in the slope-intercept form. However, for the general form of a line having the 

same slope, different answers were obtained.  Andy wrote y = 3x + anything, then wrote   

y = 3x + z, where z is a number. Betty wrote y = 3x + number on y-intercept, and Melanie 

wrote y = 3x + anything. From school Y, Pete wrote y = 3x + n, where n is a number. 

Kristina wrote y = 3x + something, whereas Abby was not able to come up with a general 

form for such a line. In this context where the symbol for the parameter was not provided, 

students found it difficult to generalise using their own symbols. 

 

Problem 5 

All points on a circle are equidistant from its center. If P(x, y) is a point on a circle having center at the 

origin and radius 5, what relation can you write connecting x and y? What would be the relation if the 

radius was 10? What would it be if the radius was r? 

To solve this problem, the students were provided with a diagram and the formula to 

find the distance when the coordinates of two points were given. The students also needed 

some algebraic skills in the manipulation of the relation that they had to write connecting x 

and y. All of the focus students were able to write down the relation connecting x and y 

using the distance formula and even the relation for the general case when the radius was 

given as r. All of them wrote 5 = √ [(x-0)² + (y-0)²], except Melanie who reversed the order 

in which she used the points in the formula, which was, of course, correct. Melanie wrote 

5 = √ [(0-x)² + (0-y)²] and then she was not sure how to simplify 5 = √ [(-x)² + (-y)²]. She 

even thought that (–x)² ≠ x² and (-y)² ≠ y². However, she was later convinced that this could 

be written as x² + y² = 25. It was interesting to note that four of the focus students Andy, 

Pete, Kristina, and Abby made the same algebraic mistake when trying to simplify the 

expression 5 = √ [(x-0)² + (y-0)²]. They wrote 5 = √ [(x² + y²], but then they went on to 

write 5 = x + y and eventually wrote x² + y² = 25. There seemed to exist some underlying 

misconceptions about algebraic simplifications.  
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Problem 6 

Two parallel lines are labeled l and m. On line l one point A is marked and on line m three points B, C, 

and D are marked. How many different triangles can be formed by joining three of the given four points? 

If the point on line l is kept fixed but one more point is added on line m, how many triangles can be 

formed in the same way? Can you find out the number of triangles that can be formed under the same 

conditions if there were 6 points, 10 points, n points on line m? 

 

No. of points on line m   3   4   5   6  10   n 

No. of triangles       

 

A diagram showing the parallel lines l and m and the points A, B, C, and D was given. 

In this problem the students had to count the number of triangles systematically as the 

number of points on line m was increased and then they had to come up with some rule for 

finding the number of triangles in the general case when there were n points on line m.  

Andy and the three students from school Y, Pete, Kristina, and Abby, had no difficulty 

in counting the number of triangles up to n = 6. They had a systematic strategy and were 

then able to extend the result to n = 10, without doing any actual calculation, by just 

following the pattern of numbers they had obtained in the table. However, they could not 

come up with a general formula for the case when there were n points on line m. Only 

Andy came up with a recursive formula. He wrote X + n-1 for the number of triangles 

when there were n points on line m, where X for him represented the previous number of 

triangles. Both Betty and Melanie were not systematic in their counting of the triangles and 

so had difficulties in completing the table. Melanie had even more difficulties than Betty. 

However, once they were able to get the values in the table up to n = 6 after some very 

careful counting and some help, they were both able to identify the pattern and were able 

to write down the number of triangles for n = 7 and n = 8 without using a diagram. 

 

Problem 7 

Two of the sides of an isosceles triangle have measures 4 inches and 10 inches. What would be its 

perimeter? Why? A triangle has sides of lengths a, b, and c. What relation(s) can you write connecting a, 

b, and c? 

This problem required knowledge about an isosceles triangle and about the geometrical 

fact that in any triangle the sum of any two sides is always greater than the third side. The 

students had to identify this geometrical fact in the first part of the problem and then to 

generalise it in the second part. The three students from school Y initially thought that 

there were two answers for the first part namely, 24 and 18. However, they soon realised 

that 18 was not a possibility and so gave the correct answer as 24. They were able to 

generalise to any triangle and wrote the relations a + b > c, b + c > a, a + c > b. The only 

difference in their answers was the inconsistent use of capital and small letters for the 

length of the sides. Abby used all small letters a, b, and c, but Pete used only capital letters 

A, B, and C whereas Kristina used a combination of both small and capital letters. 

The students from school X had different responses. Andy initially thought the answer 

was 24 for the first part but then thought that 18 was also possible. It was only after some 

prompts that he finally realised the impossibility of having 18 as a perimeter. He could not 

give a general rule for a triangle with sides a, b, and c. However, he did mention that at 

least one of a or b had to be greater than half of c. This was obviously incorrect, but it 
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seemed that his belief was that “half of a plus half of b” had to be greater than c, rather 

than “a plus b” was greater than c. Betty was not able to follow the first part of the 

problem. It was only after some help that she could do so. She wrote A + B > C, for the 

second part and with some further prompts was able to write c + a > b and b + c > a. 

Melanie initially wrote 24 and 18 as an answer for the first part. She thought that both of 

these answers were possible. After a triangle was drawn for her to illustrate the situation, 

she understood that 18 was not possible. She knew that a triangle with sides of lengths 2, 3, 

and 7 units was not possible but she could not generalise this result to a triangle with sides 

a, b, and c. When the relation a + b > c was written down, she was able to write out b + c > a 

and a + c > b. 

Discussion 

In Problems 1 to 7 the focus students had to identify a general pattern starting from few 

specific cases. It was expected that reasoning inductively from a few cases the focus 

students would be able to generate a general rule or formula. Successful strategies seemed 

to proceed through the following sequence of stages: a direct modelling stage, the stage of 

identification of a pattern, the stage of proof testing of the pattern, and the final stage for 

finding a rule for the general case. 

The direct modelling stage involved the focus students actually using strategies such as 

counting, drawing, or writing down the first few cases systematically. For example, in 

Problem 1 most of the students counted the number of squares in the 5×5 grid and some of 

them drew a 6×6 grid and again counted the number of squares before identifying any 

pattern. In Problem 2, at this stage, the students used the drawing of a quadrilateral, a 

pentagon, and a hexagon to find the angle sum by drawing inside those figures a certain 

number of triangles from a given vertex. In Problem 3, the students used the drawing for a 

quadrilateral, a pentagon, and a hexagon to arrive at a pattern of results for the sum of the 

exterior angles. In Problem 6, the students counted the number of triangles when there 

were 3, 4, 5, and 6 points on line m. Thus, in most of the problems the students were doing 

some direct modelling at this stage. 

The second stage was the stage during which the students were actually able to identify 

some useful pattern. Which pattern one chooses depends on the particular aspect of the 

pattern that one wishes to observe (Phillips, 1993), and this depended considerably on the 

students’ systematic counting, drawing, or writing/recording from the first stage. For 

example, in Problem 1 for the 5×5 grid, some students identified the pattern as 5 + 5 + 3 + 3, 

and some as 5 + 5 + 6. Although the two representations do not look very different, they 

led to slightly different ways of writing the general expression.  The generalisation was   
n + n + n-2 + n-2 for the first pattern and n + n + 2× (n-2) for the second one, which was 

later simplified to 4n-4. Thus a systematic way of counting the number of squares helped 

the students to generalise. The generalisation was fairly easy when there were sufficient 

examples to make the pattern quite evident. In Problems 2 and 3, the successful students 

were able to identify a connection between the number of sides in a polygon and the sum 

of the interior/exterior angles in the polygon. The systematic way of recording the number 

of triangles in Problem 6 in a table helped the successful students to identify a pattern in 

the results. In problems where this was not the case, the students had more difficulties in 

coming up with a useful pattern. For example, in Problem 7 the students had to come up 

with a generalisation based on only one initial case. This proved to be hard for the students. 

Lee (1996) has pointed out that the problem for many students is not the inability to see a 

pattern but the inability to see an algebraically useful pattern.  
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In the third stage, the successful focus students tested their conjectures about the 

patterns by using a particular case beyond the range for them to model directly. For 

example, in Problem 1 the students were asked to find the number of border squares in a 

10×10 grid. They knew that it was not worthwhile to draw a 10×10 grid and then to count 

the squares one by one. Generally, the students who were able to attain this stage were able 

to get to the algebraic generalisation later. “Counting on” was a common strategy for some 

of the focus students to reach a solution for the 10×10 grid, but this was not very helpful as 

an overall strategy. It was when these students were asked about larger grids such as 

100×100 where counting on strategies were not very practical that these students looked 

for alternative strategies. So, they used their earlier patterns such as 3 + 3 + 5 + 5 or 5 + 5 + 6 

from the earlier parts to get the answer. In problems 2 and 3, the students were asked to 

find the sum of the interior/exterior angles in a polygon with ten sides. The students knew 

that it was not necessary to draw the decagon and had to rely on their previous sequence of 

results. Similarly, in Problem 6 the students did not put 10 points on line m to come up 

with the number of triangles for this case. They used the patterns they had identified to do 

so.  

In the final stage, the students had to come up with a generalisation. Swafford and 

Langrall (2000) had claimed that the generalisation of a problem situation might be 

presented verbally or symbolically. In the problems that were used in this study, the focus 

students avoided a verbal generalisation and all of them tried to give symbolic 

generalisations. For the symbolic, this involved constructing an algebraic relation for the 

pattern they had noticed. Their success in the first three stages of the solution process 

helped them to come to the right conclusion. The students used the pattern that they had 

identified earlier to come up with the generalisation. For example, Betty from school X 

wrote N + N + (N-2) + (N-2) which was similar to her 5 + 5 + 3 + 3 strategy for the 5×5 

grid. She overlooked the fact that the grid was n×n and not N×N, but this minor detail did 

not seem to bother her.  In very much the same way, the students from school Y wrote  
2n + 2× (n-2), following their pattern 5 + 5 + 2×3 for the 5×5 grid. In Problem 2, the 

successful students had no difficulty in coming up with the generalisation (n-2) ×180° for 

the interior angle sum of a polygon of n sides. The pattern of results noted from the 

triangle, quadrilateral, pentagon, and hexagon was essential. By the time they had to find 

the sum of the interior angles of a 10-sided figure, they already had the pattern for the 

general case. It was a similar situation in Problem 3, except that the weaker students could 

only guess that the exterior angle sum would be 360°, but they were not able to justify it. 

The more successful students were able to show by subtraction of the sum of the interior 

angles of a polygon of n sides from the sum of all the interior and exterior angle pairs of 

the polygon that the result came out to be 360°.  

Some of the difficulties encountered by the students, such as producing variables on 

their own, and writing down the relations algebraically, hampered the students’ progress. 

For instance, the students found it very difficult to come up with a symbolic generalisation 

for Problem 6. Generally, the students were able to fill up the table, but their search was for 

a linear symbolic relationship. Most of them were able to identify a recursive relationship 

in the table but only Andy, from school X, gave an explicit recursive formula. His formula 

was X + n-1, where X stood for the number of triangles from the previous value of n, the 

number of points on line m. However, he was unable to give an explicit symbolic 

representation of the non-linear generalisation in Problem 6. Some authors caution that, in 

their attempt to write symbolic representations, students often focus on inappropriate 

aspects of a number pattern – particularly the recursive relationship between successive 
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terms in a sequence (MacGregor & Stacey, 1993; Orton & Orton, 1994). Thus, in Problem 6, 

it might be possible that the students’ focus on the recursive relationship was responsible 

for their inability to produce an explicit generalisation. Even Problem 4 was problematic 

for some of the students. In Problem 7, the students had difficulties in coming up with the 

generalisation about the sides of the triangle mainly because a single case illustrated the 

problem. It seemed that a limited number of initial cases might not be enough for the 

students to find a pattern and hence a generalisation from the pattern, although Dreyfus 

(1991) had claimed that sometimes it is better to abstract from a single case. 

The three types of conceptual obstacles in generalising activities that Lee (1996) found 

in her research were also noticed in this study. First, there were obstacles at the perceptual 

level. For example, Melanie had this obstacle in Problems 1, 2, and 3. She was unable to 

identify the pattern and this led to her not being able to proceed further on her own. At the 

perceptual level, the focus students found it easy to identify patterns that showed constant 

differences between successive terms but not when the pattern was different. The symbolic 

expressions for the generalisation was obtained easily when constant differences were 

involved but not in problems where this was not the case as in Problem 6. Second, there 

were obstacles at the verbalising level. For example, Melanie in Problem 1 was not able to 

verbalise a useful pattern and this probably led to her incorrect generalisation. Third, there 

were obstacles at the symbolisation level. For example, in Problem 6 most of the focus 

students could not come up with a generalisation using appropriate symbols, even when 

they had identified a pattern. As noted by Lee in her research, the major problem for 

students was not in seeing a pattern, but in perceiving an algebraically useful pattern. It is 

important to note that some of the focus students did not verify whether the formula they 

had generated worked in the simplest of cases. They were generally confident that they had 

the right symbolic form of the generalisation. Also it is worth noting that when the students 

were not systematic in their recording of the results then they were unable to identify any 

patterns and this led them to inappropriate conclusions.  

To check for understanding, the students were asked to solve the inverse problems in 

Problems 1 and 3. In Problem 1 students were asked to find the size of a grid for which the 

number of border squares was 76. Solving an equation was the most common strategy. 

Some of the focus students needed prompts to be able to do so. Kristina used a trial and 

error strategy. In Problem 3, the students were asked to find the number of sides of a 

regular polygon with a given exterior angle. None of the focus students were able to solve 

such a problem. Thus, the students seemed to have a loose understanding of the 

generalisations that they had come up with in the problems.  

To conclude, the study shows that the identification of a useful pattern by the students 

was a significant factor in their successful symbolic generalisation, which seemed to 

proceed in four sequential stages. However, the students had difficulties with non-linear 

symbolic generalisations. The students generally avoided verbalising their generalisations. 

Students with a weaker background in algebra, such as Melanie and Betty, had more 

difficulties generalising compared to the other students. Even the students with a stronger 

background in algebra displayed some misconceptions in handling algebraic expressions. 

In this study, all of the problems had some connections to geometry, which may have 

added to the students’ difficulties. In future studies, a broader range of problems with 

similar generalising activities may provide a more complete picture. 
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