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The concept map data from a study of Samoan university students constructing topic 

concept maps and vee diagrams of problems throughout a semester is presented. Students 

found that, initially, concept mapping their topic was difficult. However with independent 

research and multiple critiques, their understanding of the conceptual structure of the topics 

deepened, becoming integrated and differentiated as evident from the concepts selected, 

valid propositions and structural complexity of the maps. Students also improved their 

skills in negotiating meaning, challenging and counter-challenging each others’ 

explanations. Findings imply concept maps can facilitate the effective communication of 

students’ understanding within a social setting. 

Introduction 

Working and communicating mathematically is being encouraged as part of everyday 

mathematical learning in schools. Research shows students’ perceptions of mathematics 

learning reflect the way they have been taught mathematics (Thompson, 1984; Knuth & 

Peressini, 2001; Schell, 2001). In addition, pedagogical decisions teachers make about 

teaching and assessment are influenced by their mathematical beliefs (Ernest, 1999; 

Pfannkuch, 2001). Typically, an authoritative perspective views mathematics as a body of 

knowledge with classroom practices, simply a transmission of information. In contrast, 

cognitive and social perspectives view mathematics learning and understanding “as the 

result of interacting and synthesizing one’s thoughts with those of others” (Schell,  2001,  

p. 2), suggesting mathematics knowledge is a social construction that is validated over 

time, by a community of mathematicians. Hence making sense is both an individual and 

consensual social process (Ball, 1993). Classroom practices should equip students with the 

appropriate language and skills to enable the construction of the mathematics that is taught, 

and critical analysis and justification of the constructions in terms of the structure of 

mathematics (Richards, 1991). Lesh (2000) argues that, “mathematics is not simply about 

doing what you are told” (p. 193) while Balacheff (1990, p. 2) posited that “students need 

to learn mathematics as social knowledge; they are not free to choose the meanings ... these 

meanings must be coherent with those socially recognized”. 

Existing problems with mathematics learning in Samoa are perceived as related to 

students’ perceptions of mathematics, ability to communicate mathematically, and critical 

problem solving. Firstly, the narrow view most undergraduate students have, reflects their 

school mathematics experiences, found to be mostly rote learning, a problem consistently 

raised by national examiners. Even the top 10% of Year 13 (equivalent to Year 12 in 

Australia) students consistently struggle with applications of basic principles to solve 

inequations/equations and/or graph functions (Afamasaga-Fuata’i, 2001, 2002, 2005a,). 

Secondly, students justify methods in terms of sequential steps instead of the conceptual 

structure of mathematics. Thirdly, students may be proficient in solving familiar problems, 

however, the lack of critical analysis and application becomes evident when they are given 

novel problems. Such approaches are symptomatic of authoritative classroom practices in 

which students typically do not question, challenge or influence the teaching of 
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mathematics (Knuth & Peressini, 2001). The examination-driven teaching of secondary 

mathematics in Samoa naturally inculcates a narrow view of mathematics (Afamasaga-

Fuata’i, 2005a; 2002), As a result, problem solving skills students acquire over the many 

years of secondary schooling may not necessarily be situated “within a wider 

understanding of overall concepts” and would probably not be “long-lasting” (Barton, 

2001). Against this general background, this paper reports a study, conducted over a 

semester, to investigate some second year university students’ developing understanding of 

selected topics, as illustrated by individually constructed hierarchical concept maps 

(cmaps). Before the data are presented, the underlying theoretical framework and 

methodology are discussed. 

Theoretical Framework and Relevant Studies 

The difference, between an authoritative perspective of mathematics learning and 

Ausubel’s cognitive theory of meaningful learning, socio-linguistic and social 

constructivistic perspectives, is the extent to which classroom discourse and social 

interactions are supported (Wood, 1999). That is, students learn mathematics in meaningful 

ways, by developing their understanding through the construction of their own patterns of 

meanings and through participation in social interactions and critiques (Novak & Cañas, 

2006; Novak, 2002). In contrast, rote learning tends to accumulate isolated propositions 

rather than developing integrated, interconnected hierarchical frameworks of concepts 

(Novak & Cañas, 2006; Ausubel, 2000; Novak, 2002). Guiding the study were Ausubel’s 

principles of assimilation and integration of new and old knowledge into existing 

knowledge structures through a degree of synthesis (i.e., integrative reconciliation) or 

reorganization of existing knowledge under more inclusive and broadly explanatory 

principles (i.e., progressive differentiation). Both the meaningful learning and social 

constructivist approaches support the metacognitive development of students’ 

understanding and the active construction of mathematical thought whilst publicly 

presenting, for example, cmaps and vee diagrams (schematic diagrams), within a social 

setting. A cmap is a graph consisting of nodes, which correspond to important concepts in 

a domain and arranged hierarchically; connecting lines indicate a relationship between the 

connected concepts (nodes); and linking words describe the interconnections (explanation). 

A proposition is the statement formed by reading the triad(s) “node linking words
 →    node” 

(Novak & Cañas, 2006). For example, the triad 

“Functions  may be described using
 →      

equations” forms the proposition, “Functions may be 

described using equations”. 

Numerous studies investigated the use of cmaps and/or vee diagrams 

(cmaps/vdiagrams) as assessment tools of students’ conceptual understanding over time in 

the sciences (Novak & Canas, 2006; Brown, 2000; Mintzes, Wandersee, & Novak, 2000), 

and mathematics (Afamasaga-Fuata’i, 2005b; Schmittau, 2004; Swarthout, 2001); as 

communication tools (Freeman & Jessup, 2004); and as analytical tools to unpack 

teachers’/participants’ perceptions (Pittman, 2002; Wilcox & Lanier, 1999). Research in 

secondary (Afamasaga-Fuata’i, 2002) and university mathematics (Afamsaga-Fuata’i, 

2004) found students’ conceptual understanding of mapped topics was further enhanced 

after a semester of concept mapping. Research with preservice teachers showed cmaps 

were useful pedagogical planning tools (Afamasaga-Fuata’i, 2006; Brahier, 2005). 

Workshops with science and mathematics specialists and teachers found maps/diagrams 

have potential as teaching, learning, and assessment tools (Afamasaga-Fuata’i, 2002; 
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1999). The research question for this paper is: “How can hierarchical concept maps 

illustrate improvements in students’ understanding of mathematics topics?” 

Methodology 

The study required students to undertake conceptual analyses of topics (identifying 

relevant major concepts, principles, formal definitions, rules, theorems, and formulas) and 

illustrate the theoretical results on cmaps. The methodology was an exploratory teaching 

experiment to investigate students’ developing understanding of particular topics (Steffe & 

D'Ambrosio, 1996), involving meeting twice a week for 50 minutes each time over 14 

weeks with a cohort of students enrolled in a research mathematics course. 

Cmaps/vdiagrams were introduced as means of learning mathematics more meaningfully 

and solving problems more effectively. The content was from students’ recent mathematics 

courses, namely, limits and continuity, indeterminate forms, numerical methods, 

differentiation, integration, motion, multiple integrals, infinite series, normal distributions, 

and complex analysis. The epistemological principles, namely, building upon students’ 

prior knowledge, negotiation of meanings, consensus, and provision of time-in-class for 

student reflections, guided classroom practices. Hence, the study included a familiarization 

phase, which introduced the new socio-cultural classroom practices (socio-mathematical 

norms) of students presenting and justifying their work publicly, addressing critical 

comments, and then later on critiquing peers’ presented work. Time was set aside between 

critiques to revise maps/diagrams. The cyclic process was: presenting (to peers or 

researcher) → critiquing → revising → presenting underpinned the study. Of the 13 

students, 3 chose topics outside of mathematics (computer programming, cell biology, and 

organic chemistry). This paper reports the data from the mathematics cmaps only. 

Concept Map Analysis 

Although the literature documents a variety of assessment/scoring techniques (Novak & 

Gowin, 1984; Ruiz-Primo, 2004; Liyanage & Thomas, 2002), a modified version of the 

Novak scheme was adopted, which used counts of a criterion. The three criteria were the 

structural (complexity of the hierarchical structure of concepts), contents (nature of the 

contents or entries in the concept nodes), and propositions criteria (valid propositions).  

The structural criteria were in terms of integrative cross-links between concept 

hierarchies, progressive differentiation evidenced by nodes with multiple branching (more 

than one outgoing link) (which create main branches and sub-branches), and average 

number of hierarchical levels per sub-branch. The contents criteria indicate students’ 

perceptions of mathematical concepts in terms of suitable labels and illustrative examples. 

Inappropriate entries include those describing procedural steps (more appropriate on vee 

diagrams), redundant entries (indicating the need for a re-organization of concepts), and 

linking words as concept labels (linking-word-type). The definitional-phrase invalid node, 

although conceptual was too lengthy, its presence signals the need for further analysis to 

identify “concepts” as distinct from “linking words”. The propositions criteria define valid 

propositions as those formed by valid triads (i.e., “valid node valid linking words
 →     

valid 

node”).  

Concept Map Data 

The data collected consisted of students’ progressive cmaps (4 versions) and progressive 

vee diagrams of 3 problems (at least 2 versions per problem), and final reports. Only the 
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data from cmaps are presented here. The three criteria were used to assess students’ first 

and final cmaps, to identify any changes. Individual results are presented first before a 

discussion of general themes. The cmap data for Students 1 to 5 are in Table 1 and those 

for Students 6 to 10 are in Table 2. 

Student 1: Pene – Indeterminate Forms. Despite encountering “indeterminate forms” in 

first year mathematics, Pene struggled to begin a cmap. As a result of critiques, revisions 

and independent research, Pene’s final cmap became structurally more integrated 

(increased cross-links from 3 to 10), more differentiated (increased multiple-branching 

nodes from 8 to 10 and increased average hierarchical levels per sub-branch from 6 to 8), 

and more compact (decreased sub-branches from 17 to 14) with main branches remaining 

unchanged (Table 1). However, the percentage of valid nodes (from 77% to 67%) and 

valid propositions (from 52% to 44%) decreased due to increased definitional-phrase 

invalid nodes (from 8% to 30%). An example of a definitional phrase is “g(x)≠ 0 for any x 

in (a, b)”. Despite this, the final cmap was conceptually richer in its choice of concept 

labels with a structurally parsimonious, network of conceptual interconnections.  

Table 1 

Concept Map Data for Students 1 to 5 

Student 

 

1 

Pene 

2 

Loke 

3 

Fia 

4 

Vae 

5 

Heku 

 

Criteria 

First 

Cmap  

Final 

Cmap 

First  

Cmap  

Final 

Cmap  

First  

Cmap  

Final  

Cmap  

First  

Cmap  

Final 

Cmap  

First  

Cmap  

Final  

Cmap  

Contents            

Valid Nodes           

- Concepts 35 (67) 30 (65) 17 (44) 32 (56) 73 (99) 83 (83) 40 (59) 66 (99) 44 (86) 50 (74) 

- Examples 5 (10) 1 (2) 19 (49) 16 (28) 0 (0) 6 (6) 10 (15) 0 (0) 0 (0) 0 (0) 

Invalid Nodes           

-Definitional 4 (8) 14 (30) 1 (3) 8 (14) 1 (1) 8 (8) 12 (18) 1 (1) 1 (2) 15 (22) 

-Inappropriate 8 (15) 1 (2) 2 (5) 1 (2) 0 (0) 3 (3) 6 (9) 0 (0) 6 (12) 3 (4) 

Total Nodes 52 46 39 57 74 100 68 67 51 68 

Propositions            

Valid 

Propositions 

27 (52) 26 (44) 25 (69) 29 (49) 77 (96) 106 (88) 32 (51) 85 (97) 35 (66) 54 (67) 

Invalid 

Propositions 

25 (48) 33 (56) 11 (31) 30 (51) 3 (4) 14 (12) 31 (49) 3 (3) 18 (34) 27 (33) 

Total 

Propositions 

52 59 36 59 80 120 63 88 53 81 

Structural            

Cross-links 3 10 0 6 9 10 4 17 6 22 

Sub-branches 17 14 9 19 26 33 22 19 9 32 

Average 

H/Levels per 

Sub-branch 

 

6 

 

8 

 

6 

 

8 

 

10 

 

9 

 

7 

 

8 

 

8 

 

7 

Main Branches 6 6 5 7 5 8 4 5 6 9 

M/Branching 

Nodes  

8  10  5  8  18 19 9 18 9 19 

  Key    H/Levels   Hierarchical Levels       M/Branching   Multiple Branching    Count (% of total number) 
 

Student 2: Loke – Differentiation. Loke’s first cmap had relatively more illustrative 

examples (49%) than conceptual entries (44%). As a result of critiques, revisions and 
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independent research, the final cmap was relatively more conceptual (increased valid 

concept nodes from 44% to 56% and a reduction in examples from 49% to 28%), 

structurally more expanded (addition of 2 more main branches), more integrated (addition 

of 6 new cross-links) and more differentiated (increased multiple-branching nodes from 5 

to 8 and increased sub-branches from 9 to 19).  However, the reduction of valid 

propositions (from 69% to 49%) was due mainly to increased definitional-phrase invalid 

nodes (from 3% to 14%). An example of an incorrect proposition is “Differentiation also 

have a non-differentiable function”. Overall, the final cmap was more differentiated, more 

integrated and more conceptual than the first cmap.  

Student 3: Fia – Numerical Methods. Fia’s first cmap had a high percentage of valid 

propositions (96%) reflecting her careful organization of propositions. As a result of 

critiques, revisions and further research, the final cmap showed increased number of valid 

concept nodes (from 73 to 83) and valid propositions (from 77 to 106) but proportionally 

reduced (valid nodes from 99% to 89% and valid propositions from 96% to 88%) due to 

increased definitional-phrase and inappropriate nodes (from 1% to 11%). Structurally, the 

final cmap expanded (increased main branches from 5 to 8), becoming more integrated 

(increased cross-links from 9 to 10) and more differentiated (increased multiple-branching 

nodes from 18 to 19 and increased sub-branches from 26 to 33) with more compact sub-

branches (reduced average hierarchical levels from 10 to 9).  

Student 4: Vae – Limits and Continuity. Vae’s first cmap showed inclusion of complete 

formal definitions as concept labels, which the first peer critique highlighted as 

problematic. As a result of revisions, and critiques, Vae’s cmap progressively evolved into 

a more conceptual one (increased valid nodes from 74% to 99%) with substantially 

increased valid propositions (from 51% to 97%), structurally expanded (main branches 

increased from 4 to 5), more integrated (cross-links increased from 4 to 17), more 

differentiated (increased multiple branching from 9 to 18 and increased average 

hierarchical levels per sub-branch from 7 to 8), and more compact (reduced sub-branches 

from 22 to 19). Evidently, continuous revisions enhanced the hierarchical interconnections 

such that formal definitions were analysed substantively, with concepts appropriately 

linked and described to illustrate the conceptual structure of the topic. 

Student 5: Heku – Motion. Heku’s final cmap became more conceptual with increased 

number of valid concept nodes (from 44 to 50 but proportionally reduced from 86% to 

74%) and increased valid propositions (from 66% to 67%). Structurally, the final cmap 

was more expanded (increased main branches from 6 to 9), more integrated (increased 

cross-links from 6 to 22), more differentiated (increased multiple branching nodes from 9 

to 19 and increased sub-branches from 9 to 32), but relatively more compact within sub-

branches (reduced average hierarchical levels from 8 to 7). Increased invalid nodes (from 

14% to 26%) resulted mainly from increased definitional phrases (from 2% to 22%). 

Student 6: Santo – Complex Analysis. With repeated cycles of presentations → 

critiques → revisions, Santo’s final cmap (Table 2) still had the same number of main 

branches, average hierarchical levels per sub-branch, and cross-links, a reduction of valid 

nodes (from 93% to 90%) while valid propositions increased (from 74% to 79%), and 

becoming structurally more differentiated (increased multiple branching nodes from 24 to 

34) and more compact (reduced sub-branches from 68 to 66).  

Mathematics: Essential Research, Essential Practice — Volume 1

77



Table 2 

Concept Map Data for Students 6 to 10 

Student 6 6 7 7 8 8 9 9 10 10 

 Santo Santo Fili Fili Pasi Pasi Toa Toa Salo Salo 

 

Criteria 

First 

Cmap 

Final 

Cmap 

First  

Cmap  

Final  

Cmap  

First  

Cmap  

Final  

Cmap  

First  

Cmap  

Final  

Cmap  

First  

Cmap  

Final  

Cmap  

Contents            

Valid Nodes           

- Concepts 165 (87) 159 (84) 32 (67) 30 (73) 41 (36) 52 (87) 34 (76) 63 (71) 100 (57) 79 (72) 

- Examples 11 (6) 12 (6) 0 (0) 1 (2) 20 (18) 0 (0) 0 (0) 7 (8) 34 (19) 17 (16) 

Invalid Nodes           

-Definitional 1 (1) 2 (1) 3 (6) 3 (7) 3 (3) 7 (12) 6 (13) 15 (17) 8 (5) 6 (6) 

-Inappropriate 12 (6) 16 (8) 13 (27) 7 (17) 50 (44) 1 (2) 5 (11) 4 (4) 33 (19) 6 (7) 

Total Nodes 189 189 48 41 114 60 45 82 141 92 

Propositions            

Valid 

Propositions 

148 (74) 166 (79) 15 (32) 26 (62) 48 (40) 39 (67) 28 (56) 88 (81) 110 (60) 82 (73) 

Invalid 

Propositions 

51 (26) 45 (21) 32 (68) 16 (38) 71 (60) 19 (33) 22 (44) 20 (19) 73 (40) 30 (27) 

Total 

Propositions 

183 112 47 42 119 58 50 108 183 112 

Structural            

Cross-links 8 8 1 4 11 12 13 21 5 6 

Sub-branches 68 66 16 13 19 16 10 24 44 35 

Average 

H/Levels per 

Sub-branch 

 

6 

 

6 

 

6 

 

6 

 

12 

 

9 

 

11 

 

9 

 

9 

 

7 

Main Branches 19 19 4 6 12 6 3 10 10 10 

M/Branching 

Nodes  

24 34 4 9 13 11 9 17 20 16 

   Key      H/Levels   Hierarchical Levels     M/Branching   Multiple Branching     Count (% of total number)  

Student 7: Fili – Multiple Integrals. Fili’s first cmap illustrated sequential derivations 

of double and triple integrals, with critical comments targeting invalid nodes. As a result of 

critiques, revisions, and further independent research, Fili’s final cmap became more 

parsimonious (reduced sub-branches from 16 to 13 and unchanged average hierarchical 

levels per sub-branch), more integrated (increased cross-links from 1 to 4), more 

differentiated (increased multiple-branching nodes from 4 to 9), more conceptual 

(increased valid nodes from 67% to 75%) and valid propositions almost doubled (from 

32% to 62%). 

Student 8: Pasi – Integration. As a consequence of the cyclic process of presenting → 

critiquing → revising → presenting, Pasi’s final cmap evolved into a substantially more 

conceptual one (increased valid nodes from 54% to 87%) with increased valid propositions 

(from 40% to 67%). For example, a new branch illustrated the numerical limit view of 

integrals from successive approximations of area under a curve and linking it to the limit of 

the Riemann sum as a definition for the definite integral. The absence of illustrative 

examples was noticeable. Structurally, the cmap was more compact (reduced multiple-

branching nodes (from 13 to 11), reduced sub-branches (from 19 to 16), reduced main 
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branches (from 12 to 6), and reduced average hierarchical levels per sub-branch (from 12 

to 9). Overall, the final map was predominantly more conceptual with more valid 

propositions and a more parsimonious, compact final structure. 

Student 9: Toa – Normal Distributions (ND). Toa felt challenged to construct a cmap 

that included ND, Poisson distributions (PD) and binomial distributions (BD). He wrote: 

“(it was) hard to think of a concept to start the cmap and then link the others right down to 

the end when it introduces (BD, PD and ND).” The first peer critique commented the cmap 

had “too many useful concepts … missing”, and the “concepts used were paragraphs”. In 

subsequent revisions, he “tried to break down those paragraphs into one or two concept 

names” and “re-organized concept hierarchies”, eventually resulting in a final cmap that 

was more conceptual (increased valid nodes from 76% to 79%) with increased valid 

propositions (from 56% to 81%). Structurally, the final cmap became more expanded 

(increased main branches from 3 to 10), more integrated (increased cross-links from 13 to 

21), more differentiated (substantial increases with multiple branching nodes from 9 to 17 

and sub-branches from 10 to 24) and more compact within sub-branches (reduced average 

hierarchical levels from 11 to 9).  Shown in Figure 1 is part of Toa’s final map (example of 

a good cmap) showing examples of integrative crosslinks between two branches 

(proposition “Normal Distribution can be approximately used for Binomial Distribution → 

Normal Distribution”), multiple branching nodes (bell-shaped curve and parameters) and 

integrative reconciliation of a number of nodes merging into a single node (nodes x, n - x, 

p, n, q = 1 – p, with merging links to Probability Function). 
 

 
Figure 1. Partial final concept map – Toa. 

Student 10: Salo – Infinite Series. The first peer critique targeted the high number of 

inappropriate nodes (33) with subsequent critiques focussing on the need to improve 

linking words and appropriate placement of progressively-differentiated concepts. Salo’s 
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final cmap became more conceptual (increased valid nodes from 76% to 88%) with 

increased valid propositions (from 60% to 73%). Structurally, the final cmap was more 

integrated (increased crosslinks from 5 to 6) and more compact with less differentiation 

(decreased multiple branching nodes from 20 to 16 and decreased sub-branches from 44 to 

35, with a lower average hierarchical levels per sub-branch from 9 to 7) whilst main 

branches remain unchanged. Overall, the final map was more conceptual with a more 

enriched network of interconnections and structurally more integrated and more compact 

than the first cmap. 

Discussion 

Findings suggested that students’ progressive cmaps became integrated and 

differentiated as students continually strove to illustrate valid nodes and meaningful 

propositions, in response to concerns raised in social critiques and in anticipation of future 

critiques. Hence the re-definition of socio-mathematical norms appeared to affect the 

nature of students’ cmaps substantively, particularly as students had to justify their 

displayed connections, negotiate meanings with their peers, and reach a consensus to revise 

or not. For example, half the students showed increases in valid nodes, propositions, and 

structural complexity by the final cmap. There was a marked shift from simply providing 

formulas, procedural steps, excessive illustrative examples, and entire paragraphs, to 

seeking out more integrated and differentiated conceptual interconnections, which reflected 

the impact of the social interactions on an individual’s evolving understanding. Also, 

students necessarily had to reflect more deeply, as individuals, about the conceptual 

structure of topics than they normally did. Because of the need to communicate their 

understanding competently in a social setting, over time and with increased mapping 

proficiency, students became more parsimonious in their selection of concepts and more 

astute in describing the nature of the relationships between connecting concepts more 

correctly to minimize critical comments. From students’ perspectives, they realized that 

mathematics has a conceptual structure, the socially validated body of knowledge, which 

underpins its formal definitions and formulas. By searching for missing relevant concepts 

to make the cmaps more robust and comprehensive, students eventually realized that an in-

depth understanding of topics required much more than re-stating a definition or formula. 

Concept mapping required the identification of main concepts, an integrated understanding 

of connections between relevant concepts, visually organising this understanding as a 

meaningful hierarchy of interconnecting nodes with valid linking words that form valid 

propositions as socially warranted by a community of mathematicians.  

Over the semester, students eventually appreciated the utility of cmaps as a means of 

depicting networks of conceptual interconnections within topics and of highlighting 

connections between concepts, definitions and formulas. However, attaining this greater 

conceptual understanding of mathematics was hard work and required much reflection, 

social negotiation, and individual research on their part. The findings suggested that with 

more time and practice students can become proficient and adept at constructing cmaps 

whilst simultaneously deepening and expanding their theoretical knowledge of the 

structure of mathematics. Challenges faced by the students included the importance of 

getting quality feedback from their peers, sustaining students’ motivation to seek more 

meaningful connections by revising inappropriate nodes and incorrect linking words and 

reorganising concept hierarchies, and developing their self-confidence in presenting 

mathematical justifications and counter-arguments during social critiques. The progressive 

quality of students’ cmaps over the semester confirmed that students’ ways of learning 
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mathematics are very much influenced by the expectations and beliefs of the teacher, the 

prevailing socio-mathematical norms of the classroom setting, and the socially-validated 

structure of mathematics. Findings also extended the literature on the impact of social 

negotiations of meanings, interactions and critiques on the development of students’ 

conceptual understanding of topics, which in this study, was greatly facilitated with the 

visual mapping of students’ progressive conceptions on hierarchical cmaps over time. 

Finally, using the metacognitive tools promoted a higher level of self-reflection and lateral 

thinking that generally motivated students to analyse their perceptions of mathematics 

knowledge critically and specifically encourage deeper, conceptual understandings of 

topics.  

Implications 

Findings from the study imply that the concurrent use of concept mapping and social 

critiques as part of the culture and practices within mathematics classrooms has the 

potential to promote the development of mathematical thinking, reasoning, and effective 

communication, which are most desirable skills to succeed in mathematics learning. Doing 

so as early as the primary level would be an area worthy of further investigation. 
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