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I describe the design and iterative implementation of a learning progression for supporting 

statistical reasoning as students construct data and model chance. From a disciplinary 

perspective, the learning trajectory is informed by the history of statistics, in which concepts 

of distribution and variation first arose as accounts of the structure inherent in the variability 

of measurements. Hence, students were introduced to variability as they repeatedly 

measured an attribute (most often, length), and then developed statistics as ways of 

describing “true” measure and precision. The design of the learning progression was guided 

by several related principles: (a) posing a series of tasks and situations that students 

perceived as problematic, thus creating a need for developing mathematical understanding 

as a means of resolving prospective impasses; (b) creating opportunities for developing 

representational fluency and meta-representational competence as constituents of conceptual 

development; (c) introducing statistics as invented measures of the qualities of distribution; 

and (d) adopting an agentive perspective for orienting student activity, according to which 

distribution of measures emerged as a result of the collective activity of measurer-agents. 

Instructional design and assessment design were developed in tandem, so that what we took 

as evidence for the instructional design was subjected to test as a model of assessment, 

resulting in revision to each. I conclude with a look at ongoing work to design an 

assessment system to measure students’ understandings of data and statistics, and with some 

thoughts about prospective synergies between mathematics and science education. 

The discipline of statistics originated in problems of modeling variability (Porter, 1986; 

Stigler, 1986). History has not changed all that much: Professional practices of statisticians 

invariably involve modeling variability (Wild & Pfannkuch, 1999), and as in other sciences 

(e.g., Giere, 1992), it is through model contest that statistical concepts become more 

widespread and stable (Hall, Wright, & Wieckert, 2007). Another lesson of history is of 

particular importance: Reasoning about variability was initially most prominently pursued 

in contexts of measurement error. Astronomers, for example, suggested that distances 

between stars were fixed, but that measurements varied, just by chance. Mathematical 

efforts to characterize the form and structure of chance gave rise to concepts and models 

still in use today, such as least squares fit.  

Our research program follows in this historic tradition: Contexts of measure afford 

children entrée to a series of core conceptual structures or “big ideas” in the discipline and 

also, to the core disciplinary practice of inventing and revising models.  Accordingly, I 

outline a design of instruction that features repeated measure for introducing students to 

practices and related concepts of data representation, statistics, chance, and modeling. 

These practices and concepts are all developed by students to account for observed 

variability in measurements. As I describe components of the design, I characterize some of 

the recurrent patterns of student reasoning that we observed during successive iterations of 

the design in fifth- and sixth-grade (10, 11 years of age) urban classrooms in the United 

States. These collectively establish a sense of “lessons learned”. Our efforts to account for 

emerging patterns of student reasoning were accompanied by corresponding efforts to 

encapsulate these patterns of reasoning in the form of an assessment system, which is 

sketched in the second section of the paper. I conclude with some prospects for integrating 
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mathematics and science education via a shared interest in constructing and revising 

models of variability. 

Designing Instruction to Support a Learning Progression 

The instructional design was guided by an image of statistical reasoning as emerging 

from and enmeshed within a larger system of activity that we refer to as data modeling 

(Lehrer & Romberg, 1996; Lehrer & Schauble, in press). As Figure 1 suggests, data 

modeling is composed of two coupled systems of activity. The upper triangular region in 

the figure depicts the learning challenges and resources associated with the design of 

research. Designers confront challenges such as posing questions and identifying the nature 

of variables and their measures. 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 
 

Figure 1. Schematic of data modelling. 

The lower triangular region encompasses analysis, depicted as an interaction among 

data structures, representations, and models of inference. Analysts confront challenges of 

imposing structure on data, of choosing displays to highlight aspects of structure, and of 

making judgments about phenomena in light of variability and uncertainty. Although the 

cycle as illustrated invites inference of linear progression, in practice, these components of 

data modeling are typically interactive. For example, attempting to develop a measure of an 

attribute often profoundly alters one’s conception of that attribute.  

To initiate students into practices of data modeling, we designed a hypothetical 

learning progression – a sequence of tasks, tools, activities, and forms of argument – aimed 

at supporting students’ development of mathematical accounts of the inherent variability of 

measure. The learning progression was envisioned to unfold in three coordinated phases in 

the classroom. In the first, students all repeatedly measured the same object and designed a 

representation intended to communicate trends in the collection of measurements that they 

noticed. In the second, students used these displays to invent statistics. One invented 

statistic indicated the “best guess” of the measure of the attribute of the object and the 

precision of the measurements. Students explored the qualities of their invented statistics 
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with new samples of measurements of the same object conducted with a better tool. The 

latter resulted in distributions that were less variable but that had approximately the same 

centre. The third, modeling phase included investigation by students of the behavior of 

chance devices and the subsequent harnessing of these devices to construct models of 

measurement error. In the sections that follow, I describe the rationale for each of these 

three phases and also suggest recurrent patterns in student reasoning that we observed as 

we implemented the design over several iterations in fifth- and sixth-grade classrooms in 

an urban school in the United States. Participating students were from under-represented 

groups in the United States. Their families were of lower socioeconomic status. 

Inventing Representation 

Students measured an attribute of a familiar object, such as the arm-span of their 

teacher. To measure arm-span, each student first used a 15-cm ruler and then a metre stick. 

Each time, students recorded the value of the measure. The aim of this initial activity was 

to provide students with a context in which collective properties of the data, especially 

distribution, could be viewed as emerging from the actions of individual agents. We 

anticipated that students’ prior history with measurement would serve as a resource for 

making sense of the variability of the measurements. For example, the 15-cm ruler had to 

be iterated more often than did the meter stick to span the same distance.  (The former 

resulted in greater error and hence greater variability among the measurements.)  

We presented students with an unstructured collection of their measurements and 

challenged them to create a display (of the more variable measurements) that 

communicated what they noticed about the batch of data. After students created their 

displays, other students presented the display to the class and described what the display 

tended to “show and hide” about the data. This tactic was intended to foster 

representational fluency (Greeno & Hall, 1998). With instructor support, students 

compared and contrasted their invented displays. We anticipated that comparing and 

contrasting different displays would clarify relations between the choices made by 

designers and the resulting “shape” of the data.  This tactic was also intended to foster 

meta-representational capacity (diSessa, 2004) – the capacity to view a data display as 

representing a trade-off. Different choices resulted in different perceptions of the shape of 

the same data. We were especially interested in helping students understand how displays 

that grouped data and counted cases within each group produced a symmetric, bell-shaped 

distribution. Students considered possible reasons for the bell-shape of grouped data in 

light of the process of measure. We concluded this phase of instruction by soliciting 

students’ conjectures about what might happen if “we measured again”. 

Recurrent Patterns of Representation 

The most striking feature of the displays generated by the students was their variability. 

Despite years of education emphasizing conventional graphs, students often found this task 

challenging and even daunting.  

Highlighting order. The most common solution to the problem of display was to 

structure the data by ordering the magnitude of the cases. Some solutions were lists, such 

as that displayed in Figure 2.  
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Figure 2. Ordering data as a list. 

 

Others relied on space to convey a visual sense of order. The student solution displayed 

in Figure 3, a type of array graph (Snecedor & Cochran, 1968), exemplifies the latter. Bars 

or lines represented magnitudes of measurements. The designers, but not typically other 

members of the class, indicated that plateaus showed modes or clusters of values. 
 

 
Figure 3. Invented array graph. 

 Elaborating order. A second class of solutions appeared to elaborate on order by 

highlighting relative frequency. Figure 4 illustrates this propensity. Students ordered the 

cases and displayed their relative frequency as a square icon.  Note that the interval 

between case values is not represented. When the teacher asked the students which values 

would not be likely to recur if they measured again, students pointed to the lowest value. 

The display made the multi-modal nature of these data visible. The statistics represented on 

the display are remembrance of past classes – things that one did to batches of data. But 

after computing them (some incorrectly), they never referred to the statistics again.  
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Figure 4. Ordered case frequency display. 

Grouping and ordering.  Solutions that involved grouping similar values into “bins” or 

equal-interval groups were relatively infrequent.  The designers of the display depicted in 

Figure 5 grouped measurements in 10s, and they ordered the bins not by magnitude of the 

measurements but instead by relative frequency. Another pair of designers in the same 

class rendered their display to coordinate the order of the magnitude of the observed 

measurements with the relative frequency of each interval class (Figure 6). The 

corresponding difference in the shape of the data is striking.  
 

 
Figure 5. Bin display ordered by relative frequency. 
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Figure 6. Bin display coordinating case magnitude and frequency. 

Interval displays. The least common form of recurrent display was that of interval. 

These were developed by students who wanted to represent both what was missing as well 

as what was present in the data, so that holes and clumps could be viewed simultaneously. 

For example, in Figure 7, a pair of sixth-grade students listed relative frequencies where 

zero indicated missing values in the interval described by the observed measurements. 

Hence, 0 = 14 refers to the number of values in the interval between 30 feet and 66 feet for 

which there was no missing case. The 1 = 9 refers to the number of values in the interval 

for which there was only 1 case missing. Figure 8, a display designed by a pair of fifth-

grade students, illustrates similar attention to interval but in a manner that is more 

conventional. 

 
Figure 7. Representing what is missing. 
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Figure 8. Interval display of relative frequencies. 

Comparing representations. Discussions about the variations in design helped students 

develop an appreciation of different senses of the “shape” of the data. However, students 

typically focused on individual displays and did not spontaneously engage in comparative 

analysis. When prompted to compare two different kinds of displays, they often referred to 

qualities such as icons employed by the designers. For example, students said that they 

could see squares in one display (to show number of cases) but these were not used in 

another display. Students often mentioned that a certain display was easy to be seen 

because it had larger text size. More rarely, a student looked at a display that listed all 

possible measurements on a number line and said, “They put numbers in between, so you 

can see how far they went.”  Hence, I often took a more active role, drawing student 

attention to trade-offs among displays by asking them to translate a cluster of cases from 

one representational scheme into another. I also asked students to develop and test 

conjectures about the relation between the size of a bin  (interval) and the resulting shape 

of the data. These scaffolds appeared to raise students’ awareness of relations between 

design decisions and shape.  

Inventing Statistics 

Following the invention of a representation of the data, students were challenged to 

invent a measure of the “best guess” of the length of the attribute (e.g., the height of the 

school’s flag pole). At this point in the learning progression, we anticipated that students 

could draw on resources of representation and on their knowledge of how the measures 

were produced. By considering how to develop a measure, we aimed to engage students in 

deeper consideration of the nature of distribution. What might be worth attending to about 

the data? Students could use any of the invented displays to help answer this question. We 

later engaged students in a similar process to develop a measure of the precision of 

measurements. The definition of precision was intentionally left up to the imagination of 

the students, so that we could engage students in the relation between measure and qualities 

of attributes noted in the upper triangular region in the data modeling cycle displayed in 
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Figure 1. During this period of time, we introduced students to TinkerPlots (Konold & 

Miller, 2005), so that TinkerPlots capabilities for dividing and re-organizing the data could 

be used to construct a measure of precision. 

After inventing measures, other students attempted to make use of them. The 

pedagogical intention was to help students consider the communicative uses of algorithm. 

Students tried out their methods with other batches of data (to promote generalization), 

including the measurements of the same attribute with a better tool. For the latter, students 

noted a reduction in the spread of the data, and I asked if their measure corresponded in 

meaningful ways to what they could readily perceive in the displays.  

Recurrent Patterns of Invented Statistics 

Many students struggled with the very idea of inventing of a measure. Some suggested 

that the only reasonable approach was to ask an authority – a member of the custodial staff 

or the manufacturer – to find the height of a flagpole. Others found the notion of 

representing many measurements by a single value implausible. We seized these challenges 

as opportunities to conduct conversations about qualities of good measures and of the need 

to be explicit about one’s method, so that others could find the same measure.  

Measuring centre. Students’ invented solutions to estimate the true measure of the 

attribute generally focused either on repeated values or on the location of the centre clump. 

Because the data were often multimodal, modal solutions were perceived as less useful, 

because the inventors typically failed to justify one choice of mode rather than another. 

Most solutions involving the centre clump used a graphical method to identify the centre 

clump, and then found the middle value of this centre bin. Many students found this 

persuasive, but others pointed out that it left out many of the other measurements. A few 

student teams (at least one in every iteration of the design studies) invented the median, 

although they did not know this convention at the time of invention. Their reasoning was 

guided by a sense of splitting the data “in half” and they used bin displays of the data to 

count an equal number of cases from the tails of the distribution toward the centre. In some 

data sets, the number of cases was even and the choice for median did not correspond to 

any observed value. Classmates objected when the median value was not instantiated by an 

actual measurement, but were persuaded by appeal to the measurement process: The 

median represented a value that might have easily been someone’s actual measurement. It 

was a “possible measurement”. This form of student reasoning signalled a shift away from 

considering only cases toward considering the aggregate.  

Measuring precision. Students’ efforts to develop measures of precision most often 

generated a focus on the “closeness” of the data. More precise measures were those that 

were closer. We supported this intuition by asking students to predict the value of the 

measurements if the measures were “absolutely” precise. The three most common solutions 

to the problem of precision were (a) focus on extreme cases (the range), (b) focus on 

closeness as distance between a case and other cases or a common point, such as the 

median, and (c) centre clump solutions, motivated by considerations such as “where the 

precision was where most people had their numbers”.  

The range corresponds to convention and thus requires no further explication. The 

activity of a pair of fifth-grade students exemplifies the second class of solution methods.  

Their method was spurred by consideration of potentially perfect agreement among the 

measures, which they suggested would result in no spread or a measure of 0. I asked how 
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they might define their measure so that zero would result. Their response was to consider 

differences between each case and the median (which they had invented in the previous 

portion of this phase of the design study).  On the basis of previous work with integers, 

they decided that they would first find the absolute value of each difference. Then, they 

proposed finding the sum of these absolute values. Their confidence in this measure was 

bolstered by its ability to differentiate between distributions of measurements where 

students employed more precise and less precise tools (e.g., 15-cm rulers vs. metre stick for 

arm-span). I asked students what they might expect if the number of measurers using the 

more precise tool increased to 100 (about 3 times the original sample) and this precision 

was compared to the less precise tool used by fewer measurers. The students noticed that 

use of their measure would mislead: ‘People will think that the more precise tool is worse 

than the less precise tool’ (‘ denotes paraphrase). To solve this problem, one suggested the 

modal difference and the other, the median. They settled on the median but had difficulty 

maintaining the relation between the medians for the distribution of measures and of 

differences (Figure 9). My suggestion to consider the median of these differences as 

representing “typical closeness” appeared to stabilize this distinction (meaning that when 

presenting to classmates, they were able to clearly articulate the distinctions).  

 
Figure 9. TinkerPlots graph of absolute values of differences with indication of median difference. 

Student focus on difference often led to unexpected consequences. For example, one 

sixth-grader, Robert first focused on the distance between the extreme values of the 

distribution and the mean. I asked him how he might characterize the precision of the 

group of measurers rather than just two of them. He decided that he would average the 

differences, because this would result in a method that would indicate how close the 

measurements were, “on average”. When he attempted to find the mean of the differences, 

he was surprised that the sum was zero. Robert was puzzled, but he reiterated that he 

thought his method was good for finding the distances between each score and the mean. 

He plotted each difference with TinkerPlots, and wondered what might have gone wrong 

(Figure 10). 
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Figure 10. TinkerPlots display of Robert’s signed differences. 

 

In light of class discussions about some estimates being over and some under the real 

height of the flagpole, I asked if Robert were more concerned about the direction, or the 

magnitude, of each difference. Robert mentioned that the direction of the difference was 

not that important – some measures must be greater than the mean and others less. Hence, 

what mattered was how far each measure was from the mean. I built on Robert’s insight to 

introduce the absolute value function. Robert used the absolute value function to generate 

the average deviation. He then plotted the absolute values of the differences, and located 

their average value – the average deviation (Figure 11), although Robert did not know this 

convention. 
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Figure 11. Plot of absolute values of differences and average deviation. 

In contrast to close attention to difference, some students defined precision by attending 

to the relative compaction of the centre clump. Attention to the centre clump typically 

resulted in measures of precision that corresponded to the inter-quartile range. This 

definition was supported by the TinkerPlots function of “hat plot”, but students often used 

this function only after developing a very similar measure. For example, the solution 

developed by one sixth-grade student for measuring precision found the lower and upper 

bounds of the decade-interval that contained the mean. I capitalized on this intuition to 

introduce the hat plot function, to which the student responded by adding the reference 

lines to indicate the lower and upper bounds of the mid-50, as displayed in Figure 12.  
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Figure 12. A 25-75 percentile hat plot with reference lines. 

Modeling Measure 

Following invention of representations and statistics to describe observed trends in 

variability across different measurement contexts and tools (e.g., arm-span and head 

circumference, with lower and higher quality tools), the third phase of the learning 

trajectory is designed to introduce students to the pragmatics and epistemology of modeling 

chance. We begin with explorations of the conduct of chance devices, starting with hand-

held spinners and graduating to a new version of TinkerPlots that supports this type of 

simulation. For example, Figure 13 displays the results of a simulation of a 50-50 spinner 

with a sample size of 10. Students conducted investigations such as these with varying 

sample sizes, and we asked students to account for observed differences in departure from 

expectation as they ran each simulation repeatedly. The line in the Figure 13 was invented 

by a sixth grade student who thought that changes in slope were a good indicator of 

departure from expectation as she repeatedly ran the simulation. 
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Figure 13. Exploring chance with TinkerPlots. 

Modelling observed measure. Following investigations of chance, we introduced a 

prospective model to students of observed measurement as constituted by two sources. 

Both were familiar to the students. The true measure of the attribute was not directly 

accessible, but could be reasonably approximated by a centre statistic. The differences 

among measurements could not be attributed to change in the attribute. (One fifth grader 

thoughtfully noted that her teacher’s head circumference would not change during the 

interval of measure but she could not say what might happen in the future!) Hence, 

differences in measure were due to errors of measure. Because students were familiar with 

processes of measure, we expected that they would be capable of generating conjectures 

about sources of error. For each source of error, students constructed spinner models that 

used area to represent relative likelihoods. Relative magnitude and direction of error were 

also represented as positive and negative values, in the original units of the measure 

employed by the students. After students constructed and ran simulations of their models, 

they revised them, as needed. During the final portion of the activity, students constructed 

“bad” models – models that were designed to employ the same model structure but produce 
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results that would be judged as poor fits to the observed values. This concluding activity 

provided a window to students’ conceptions of model fit and their skill in using the 

behavior of chance to create the intended structure of outcomes.  

Recurrent Patterns of Modeling 

Our approaches and technologies for modeling have been revised during successive 

iterations, so we are least confident of the stability of results.  However, during three 

iterations of the design studies, students appeared to be capable of readily identifying 

sources of error. For example, when measuring the arm-span of the teacher, students 

noticed that use of the 15-cm ruler produced much larger spreads (and less precision) when 

contrasted to the use of the metre stick. They attributed this difference to needing to iterate 

with the shorter ruler more often. Each iteration provided an opportunity to produce either 

over-estimates of the true length or under-estimates. Students attributed the former to 

“laps”, instances where the beginning of one measure and the end of another overlapped, 

resulting in repeated measure of the same distance. The latter were attributed to “gaps”, 

instances where the end of one iteration and the beginning of another were not aligned, 

resulting in an unmeasured distance.  

To illustrate, I consider the efforts of one pair of fifth-grade students to model the batch 

of measurements of the circumference of their teacher’s head. They designed spinners to 

correspond to three sources of error, which they termed ruler error, slippage error, and 

reading error. The first two sources of error referred to potential difficulties using tools to 

measure the circumference of the teacher’s head. For example, slippage referred to the tape 

slipping or stretching as they wound it around the head. Ruler error referred to the 

difficulty of establishing a common beginning and ending point for the measurements and 

for measuring the circumference in exactly the same imagined path around the head. 

Reading error referred to perceptual difficulties, for example, a measurer might have 

difficulty judging the number of cm. to the nearest whole number. Each observed 

measurement was represented by the sum of random error (the sum of the 3 spinners) and 

the median of the observed measurements, representing an estimate of the true length of the 

circumference. These spinners are displayed in Figure 14. After running this simulation, 

the students noticed that it tended to overestimate the centre of the distribution and to 

produce spreads that were not aligned with the observed values. Hence, they re-designed 

the spinner depicting ruler error (the far left of Figure 14) to eliminate unrealistically large 

magnitudes and likelihoods. The resulting simulation was a better match to the shape and 

centre of the observed values. During the conduct of this simulation, the students noticed 

that net errors were occasionally zero and that unlikely events nonetheless occurred.  
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Figure 14. Simulation of sources of random error. 

 

Bad models were a playful way for students to investigate further relations between 

model design and outcomes. For example, in Figure 15, a fifth-grade student managed to 

invert the shape of the observed distribution and to produce a skew as well. 

 

 
Figure 15. Results of a simulated bad model of normally distributed measures. 
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Designing Assessment to Support Instructional Design 

In most design studies, day-to-day decisions are made in light of evidence about student 

thinking, most often obtained from inferences based on students’ discourse and artifacts 

that they produce. Much of the previous presentation of recurrent patterns of student 

reasoning follows in this tradition.  In design research, assessment is often considered after 

the fact, as summative evidence of more widespread patterns of individual performance. 

However, in our design studies assessment played a central role, both in the conduct of the 

studies and in the interpretation of the results. In fact, one of the anticipated outcomes is 

the creation of an assessment system.  

To create an assessment model, our conjectures about the forms of knowledge and the 

nature of conceptual change underpinning learning about variability were expressed as 

progress variables (Wilson, 2005). Progress variables model trajectories of development. 

They demand that designers of learning progressions make their commitments about 

conceptual growth explicit. We constructed progress variables in seven conceptual strands: 

(a) theory of measure (conceptual landmarks for understanding the nature of units and 

scales of measurement, which are prerequisite understandings for the learning progression), 

(b) modeling measurement, (c) data display, (d) meta-representational competence,  (e) 

concepts of statistics, (f) probability/chance and (g) informal inference. Table 1 illustrates a 

summary of the Data Display progress map, which lays out our conjectures about 

prospective transitions in students’ conceptions, from case-based to aggregate-based ways 

of constructing and interpreting data displays. The full version of each construct contains 

examples of each performance in both text and video formats. 

Although progress maps may appear to have a preordained character, in fact, they are 

negotiated as the design study unfolds, so that progress maps take several design iterations 

to “settle”. Hence, they serve as a visible trace of prospective conceptual landmarks for the 

design team. 

Based on the construct maps, we designed items to support instruction and to index 

student progress over longer periods of time. To support instruction, some items were 

designed as formative tools to diagnose student conceptions. These were administered as 

weekly quizzes, and the results were employed to re-design the learning progression. For 

example, during one design study, the results of a formative assessment indicated that 

many students interpreted their classmates’ invented statistic, the median, to be a half-spit 

of the data located in the “middle” of a string of data. They apparently did not consider the 

order of the data as critical, relying instead on the spatial centre of the data presented by the 

inventors of the statistic. Consequently, we decided to problematize “half” by contrasting 

the distance-based image of the mid-range with the count-based definition of the median.  

Students thought that any estimate of the best guess of the length of the arm-span should be 

located in the centre clump. Their image for mid-range was a paper strip folded into two 

congruent lengths, an image familiar to them from class work earlier in the year finding 

partial-units of length measure. The fold line of this strip located ½; but, what was the 

relation of this distance-based sense of half to the half demarked by the median? If the mid-

range was “halfway”, how could the median also be considered half? How could counting 

result in a location in the centre clump? We constructed several small sets of imagined 

measurements with the lowest or highest values located in the centre. By simply counting, 

the extreme values were considered best guesses of the true measure. Yet, this contradicted 

children’s sense. This contradiction was resolved by re-examining the role of order in 
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determining the median, and by juxtaposing two different senses of “1/2-split” – one based 

in distance and the other in position within an ordered sequence. We also took this 

opportunity to investigate robustness of the statistics proposed – by investigating the effects 

of “one bad measurer” on the estimate of true measure. (The mid-range declined in 

popularity when students considered that just one student-measurer could shift the value of 

the mid-range out of the centre clump.) These modifications were incorporated into 

subsequent iterations of the design. 
 

Table 1  

The Data Display Construct 

 Level Performances 

 
DaD6. Integrate case with aggregate 

perspectives 

DaD6(a)  Discuss how well individual values or regions 

represent the patterns seen in the whole distribution, or 

vice versa. 

 

 DaD5(b) Quantify aggregate property of the display 

using one or more: ratio or proportion or percent.  

 

DaD5. 

Consider the data in aggregate when 

interpreting or creating displays 

 

 

 

DaD5(a) Recognize that a display provides information 

about the data as a whole that goes beyond any of the 

cases by themselves.  

 DaD4(b) Recognize the effects of changing bin size on 

the shape of the distribution 

 
DaD4. Recognize or apply scale properties 

to the data  
DaD4(a) Display data in ways that use its continuous 

scale (when appropriate)  to see holes and clumps in the 

data. 

 DaD3(c) Identify data points that are dissimilar to the 

rest. 

 DaD3(b) Identify grouping of similar values (e.g., high, 

medium, low values).  

 

DaD3. Create categories of cases based on 

relationship among them  

DaD3(a) Note similar values or “clumps” in the data set. 

 DaD2(b) Manipulate data attending only to its ordinal 

properties. 

 

DaD2.  

Concentrate on cases when working with 

data  

DaD2(a) Concentrate on specific data points (minimum, 

maximum, median, mode), without relating these to any 

structure in the data.  

 
DaD1. Treat data as collection of individual 

numbers or attributes 

DaD1(a) Manipulate, notice and explore qualities or 

relations of data values, without relating to the goals of 

the inquiry.  
 

Although this effort is still a work in progress, we are currently working to articulate an 

assessment system that will span both instruction and accountability. From the perspective 

of conducting studies of learning, the formative assessments standardize our commitments 

about what counts as evidence of student reasoning. The summative assessments provide a 

less fine grained but broader spectrum to track conceptual change. This provides an 

opportunity to engage in design experiments, in which the implications for learning of 

different instructional designs can be contrasted in a common metric.  

Discussion 

The links between data analysis, chance, and modeling have often been severed in 

school mathematics. Yet, in a wide variety of professions, data modeling is integral to 

practice. The epistemology in professions is one of model building and competition, not 
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one of “descriptive” statistics, followed by “inferential” statistics, which is the standard 

practice in schools. I propose restoration of the link between data modeling and statistical 

reasoning in schooling, not merely because it is what professionals do, but more 

importantly, because it is a viable and fruitful approach for supporting the growth and 

development of student reasoning about variability. Variability is ubiquitous and it is 

critical for thinking in the 21
st
 century that we equip students with ways to reason about it.  

The learning progression outlined in this paper rests on several general principles of 

learning and on the potential affordances of measurement as a context for investigating 

variability. The first is that of agency. If measure is framed as activity, rather than as a 

product, students can mentally simulate the role of agents and/or they can literally enact 

measurement process. Agency mediates student apprehension of variability by making 

process transparent (e.g., individual measurers can recall qualities of method and measure 

that might lead to “mistakes” in measurement), and it grounds symbolic expression, in that 

students can readily relate presentational qualities (e.g., hills in graphs) and measures 

thereof (e.g., medians as measures of centre) to specific forms of activity. A related virtue 

of agency is that qualities of distribution can be viewed as emerging from the collective 

activity of agent-measurers. Hence, a statistic, such as the median or mean, can be viewed 

readily as a measure of central tendency (Konold & Pollatsek, 2002), and the explanation 

for such a tendency can be attributed to the notion of a true or fixed value. 

Second, developing representational and meta-representational competencies have 

important conceptual consequences. The diversity of representations invented by students 

supports the concept that the shape of the distribution is not a Platonic ideal, but rather, a 

result of a particular set of choices made about what to attend to, and what to obliterate, in 

a system of representation. Not all students fully grasp the idea of representational trade-

off, but supporting comparisons among representations provokes mathematically fruitful 

consideration of different meanings of the “shape” of the data. Seeing hills and valleys is 

one thing, knowing how they are produced and how they might be magnified or even 

eliminated is another. We strive for the latter, and it appears that this is a consistent 

outcome when we deliberately instigate comparisons among representations.  

Third, inventing measures of what students can readily “see” in a set of data invites 

closer inspection of the qualities of the data that contribute to the perception. Students’ 

invention of measures of centre and spread support consideration of just what one might 

mean by each. Thus, there is an intimate relation between conceiving of the “centredness” 

or “spreadness” of the distribution and its measure. What students see after inventing 

measures is often different than what they saw before such invention. Thus, measure is an 

important cornerstone to quantification (Lehrer, Carpenter, Schauble, & Putz, 2000; 

Thompson, 1994). Inventing measures supports a meta-conceptual development: What 

does it mean to measure and what are qualities of good measurements? These 

developments are supported when students employ their inventions to measure the 

attributes of new distributions that were formed when measurers used different methods or 

tools. For example, students’ experience suggests that measuring the arm-span of a person 

with a 15-cm ruler is more error prone than the same measure employing a metre stick 

(fewer iterations lead to less error). Hence, it makes sense that the distributions have 

different precisions and that the measure ought to reflect these differences. Measure allows 

too for a new form of inquiry not as readily sustained by the eyes: How much more (or 

less)? 
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Fourth, the conceptual landscape of modeling is altered by the technologies deployed 

for modeling. When we first began, students used hand-held spinners to construct models, 

and these were certainly adequate tools for engaging in the process of modeling chance. 

However, we cannot help but notice that the introduction of TinkerPlots alters this 

landscape. One form of alteration is in ease of model design and revision. Although we 

wish for more capability from TinkerPlots, and we are confident that we will soon see it, 

the current implementation allows for much more rapid prototyping and running of models. 

We believe that this has a conceptual consequence: Models that are run more often invite 

attention to sample-to-sample variation in outcomes. This embarks students on the road to 

sampling distribution, an unintended consequence from the point of view of our initial 

conception of the learning progression. 

Last, although we often hear that cognitively guided assessment is a virtue, it is 

difficult to find many examples. Of course, virtue is always distributed more like Poisson 

than Gauss, but our work with colleagues at the Berkeley Evaluation and Assessment 

Research Center and the work of Jane Watson and her colleagues (e.g., Watson, 

Callingham, & Kelly, 2007) suggest that linking assessment to models of learning statistics 

is not a trivial pursuit. When we work collaboratively with assessment experts during the 

design of instruction, we find that both of our professional worlds are enriched, and we 

hope, so too are those of the students.   

I conclude with a lamentation. The opportunities for supporting student reasoning 

about variability are often confined to mathematics education. Yet the origins of the 

mathematics of variability arose in contexts of modeling nature, and these contexts are still 

a primary arena for modeling variability. Unfortunately, school science works full time to 

hide this variability from students, especially in pursuit of laboratory exercises with 

gargantuan effect sizes that render inference moot. This is a lost opportunity. A science 

education that encouraged student inquiry and model development would be a natural site 

for grappling with issues of variability.  
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