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The mathematical problems, tasks, demonstrations, and exercises that teachers and students 

engage with in classrooms are, in general, specific instantiations of general principles. 

Indeed, the usual purpose of such examples is to illustrate those principles and thus 

facilitate their learning. With this in mind, it is clearly important for teachers to be able to 

choose or design suitable examples, to recognise what is offered (or afforded) by particular 

examples, and to know how to adapt an already existing example to better suit an intended 

purpose. Although writers of textbooks and other teaching resources also need these skills, 

it is ultimately the teacher who puts the examples to work in the classroom. Teachers’ 

choice and use of examples is indicative of their pedagogical content knowledge (PCK)—

the complex amalgam of mathematical and pedagogical knowledge fundamental to teaching 

and learning—and reflects their understanding of the mathematics to be taught and how 

students can be helped to learn it. This paper examines some of the issues associated with 

example use and how it is informed by and can inform us about PCK. 

When a mathematics teacher asks a class to find the solutions of x2
− 5x + 6 = 0 , an 

observer may already have an idea about the point of the exercise. The task appears to be 

about solving equations—more specifically, quadratic equations. Beyond this, however, 

some contextual information is needed in order to understand fully the teacher’s purpose in 

choosing that particular example. What if the next problem assigned is to find the solutions 

of x2
− 2x + 5 = 0 ? Does this tell us anything? The two problems do not appear very 

different structurally, so why assign both? How are the two problems the same and 

different? What more does the second example tell us about the teacher’s learning 

intentions? 

This scenario highlights a number of issues. First, the teacher’s purpose in using the 

tasks most likely is not to solve the specific problems but to teach more general principles. 

The actual solutions to the specific equations x2
− 5x + 6 = 0  and x2

− 2x + 5 = 0  are not 

of interest, but the teacher is likely very interested in highlighting conceptual issues such as 

equation-solving methods and the nature of solutions. Second, the purpose of an example is 

always context dependent. In this case, the presence of the second problem suggests that 

the focus of the learning activity might be on the fact that some equations do not have real 

solutions. Third, a particular example may be used to exemplify different things. For 

instance, the intended purpose for solving the equation x2
− 5x + 6 = 0  might be 

factorising, completing the square, using the quadratic formula, or highlighting the fact that 

an equation can have more than one solution. Finally, for an observer to determine (or 

hypothesise about) the purpose of the examples requires mathematical knowledge. More 

significantly, however, the teacher had to know what mathematical ideas she wanted to 

convey and, with this knowledge, needed to be able to design or choose examples to suit 

her purpose. 

Although this illustration comes from the secondary mathematics curriculum, the 

principles apply more broadly, including to primary mathematics teaching, the focus for the 
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research reported here. Investigating these issues closely involves a consideration of what 

constitutes appropriate teacher knowledge, how to examine opportunities inherent in 

classroom activities, what is meant by “example”, and how examples can be used. 

Background 

Pedagogical Content Knowledge  

Before narrowing the focus to that part of teaching that involves example choice and 

use it is useful to briefly examine the broader domain of pedagogical content knowledge 

(PCK). Shulman’s 1986 introduction of the term highlighted the fact that teacher 

knowledge—and resultant teacher effectiveness—depends on more than discipline content 

knowledge alone. He identified many of the facets of knowledge that contribute to PCK, 

including knowing what models and explanations support learning, understanding typical 

student conceptions, and recognising what makes a task complex or easy. These have now 

gained the attention of many researchers who have examined the nature of this knowledge 

in more detail. Other aspects of PCK include knowledge of connections among and within 

topics (e.g., Askew, Brown, Rhodes, Johnson, & Wiliam, 1997), deconstructing knowledge 

into key components (e.g., Ball, 2000), content knowledge (e.g., Kahan, Cooper, & Bethea, 

2003), knowledge of representations (e.g., Leinhardt, Putnam, Stein, & Baxter, 1991), and 

Profound Understanding of Fundamental Mathematics (PUFM) (e.g., Ma, 1999). Lampert 

(2001) highlights the complex interplay among aspects of PCK in the classroom milieu. 

Drawing on this work, Chick, Baker, Pham, and Cheng (2006) developed a framework for 

pedagogical content knowledge (see Appendix 1). The framework attempts to identify the 

key components of PCK, how they are evident in teaching, and the degree to which both 

pedagogical and content knowledge are intertwined (see also Marks, 1990). 

Everything that a teacher does—planning lessons, implementing them, responding to 

what arises in the classroom, interacting with students—involves one or more aspects of 

PCK. A lesson on the numeration of decimals, for example, might involve the decision to 

use a particular model to illustrate the concepts. This requires knowledge of different 

models and what they offer, recognising that their strengths and weaknesses depend on 

their epistemic fidelity (see Stacey, Helme, Archer, & Condon, 2001), that is, the capacity 

of the model to represent the mathematical attributes of the concept effectively.  Having 

chosen the model, the teacher then has to use it appropriately in the classroom, recognising 

the students’ present levels of understanding, developing appropriate explanations, and 

finding ways to respond to students’ uncertainties and questions. The tasks that are then set 

in order to consolidate understanding or to foster its further development also reflect the 

teachers’ PCK, since they should match the lesson’s learning objectives.  

Affordances and Didactic Objects 

Considering tasks and how useful they might be in the classroom requires an evaluation 

of what they have to offer. Gibson (1977) introduced the term affordances to refer to the 

uses perceived for an object by a potential user. So, for example, a chair affords uses as a 

seat or a bookshelf but, at first, may not seem to afford a use as an umbrella. That said, 

however, observing a gorilla holding an upturned chair over its head in the rain reveals 

that, in the gorilla’s perception, “rain shelter” is one of the affordances of a chair, and, thus, 

becomes an affordance of the chair for the observer now that the observer has perceived it 
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too. This emphasis on the “perceived” uses is problematic, especially for some of the issues 

considered here, because in teaching there are many opportunities and examples that have 

the potential to be applied in pedagogically useful ways, and yet are not because the teacher 

does not perceive the opportunity. As a consequence, the term potential affordances is used 

to refer to the opportunities that are inherent in a task or lesson. A teacher may well be 

aware of some of them—indeed, awareness of these potential affordances is usually 

evident in how the task is used—but the teacher may not necessarily be aware of all of 

them, or even the “best” of them. Furthermore, in the unscripted world of the classroom, 

some of these opportunities may not come to fruition because of other interfering factors; 

as Anne Watson writes, learning environments involve “a complex interplay between what 

could be possible, what is possible, and what is seen as possible” (Watson, 2003, p.37). A 

teacher’s PCK influences the degree to which she identifies the potential affordances in 

tasks and activities, makes pedagogical choices that allow her to offer desirable affordances 

in the classroom, and then finds ways of making those affordances give rise to effective 

learning. 

Thomson (2002) talks more specifically about the role of discussion and usage in the 

learning process, and uses the phrase didactic object  

… to refer to “a thing to talk about” that is designed with the intention of supporting reflective 

mathematical discourse. … [O]bjects cannot be didactic in and of themselves. Rather, they are 

didactic because of the conversations that are enabled by someone having conceptualized them as 

such. (p.198) 

This has relevance to models and representations, and, of course, examples. To illustrate 

this for models, note that although multi-base arithmetic blocks (MAB) are conventionally 

used to model base 10 numbers—especially units, tens, hundreds, and thousands—they can 

also be used to model decimal numbers. To do so, however, requires a reconceptualisation 

not only for the teacher, but also for the students. The MAB blocks afford the opportunity 

to model decimal fractions, but the reconceptualisation is needed to turn them into a 

didactic object. A whole new set of conversations must be evoked by the teacher in order to 

use MAB in this way, at the same time taking account of the epistemic fidelity issues 

(again, see Stacey et al., 2001). An example has the same capacity, potentially affording 

many things but delivering none until conceived as a didactic object. “Find the solutions of 

x2
− 5x + 6 = 0 ” could illuminate many concepts, but its purpose must be identified by the 

user and then utilised in such a way that the desired concepts become apparent.   

Examples 

The meaning of “example” has, so far, been assumed as understood. It is necessary, 

however, to define it. For the purposes of this paper an example is a specific instantiation 

of a general principle, chosen in order to illustrate or explore that principle. This covers the 

usual sense of “example”, such as a teacher making a point by giving a specific illustration 

(e.g., “eight is an even number because it can be written as two times a whole number”) or 

demonstrating a solution procedure (e.g., a calculation using the long multiplication 

algorithm). It also covers assigned exercises and extended tasks.  

Bills, Mason, Watson, and Zaslavsky (2006) give an extensive overview of the history 

of example use and the role of examples in learning theories. Ball (2000) highlights how a 

particular task needs to be examined by the teacher to determine what it offers students, 

and then discusses the issue of deciding how to modify the task to make it easier or 
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simpler, or to make it illuminate particular concepts. Watson and Mason (2005, 2006) 

highlight the way in which changes to examples can highlight different concepts, and also 

show that getting learners to construct examples provides rich learning experiences. In fact, 

the situations discussed in the early chapters of their 2005 book show two significant 

aspects of examples. Although their primary thesis concerns examples constructed by 

students and how these develop mathematical understanding, in most cases these examples 

would not be generated without an appropriate task assigned by the teacher. Some of these 

tasks are quite open (e.g., “Construct a data set of seven numbers for which the mode is 5, 

the median is 6 and the mean is 7”, p.2). If the teacher’s intention with the task is to have it 

illustrate a general principle, notwithstanding that the students develop the specific 

instantiations, then it is argued that this makes the task an example too—perhaps in a 

“meta” sense, but an example nevertheless. Indeed a task may reflect more than one level 

of example-hood. A teacher may, for instance, select the “pizza” model for fractions—with 

the pizza exemplifying a fraction—and then ask students to show that 
1
/4 and 

2
/8 are the 

same—with the choice of 
1
/4 and 

2
/8 intended to exemplify general issues associated with 

equivalent fractions. 

For all that a specific example may be an instantiation of a general principle, one of the 

key concerns in example use is to ensure that the general is revealed out of the particular. 

This requires teachers to identify the important and unimportant components of the 

example that illustrate the generality. Bills et al. (2006) cite a case from the work of 

Rowland and Zaslavsky illustrating how variation in some digits in the subtraction problem 

62-38 still allows regrouping to feature, but that other choices “ruin” the problem for that 

purpose. Watson and Mason have adapted an idea of Marton (cited in Watson & Mason, 

2005), dimensions of possible variation, to discuss ways in which an example’s scope can 

be varied. Skemp (1971, pp. 29-30) talks about the role of noise in examples, and that 

identifying the general principle requires the learner to distinguish the salient features from 

the extraneous. One key implication of this is that teachers’ example choices must allow 

the relevant features to be detected through the noise (although Skemp points out that some 

noise is important). Since there are often many variables and features in an example, 

choosing the appropriate instantiations is critical, and requires adequate PCK.  

Returning to the framework for PCK (Appendix 1), all aspects of PCK can influence 

example choice and use. Of particular significance are (i) the underlying content-related 

aspects—such as PUFM and knowledge of connections and representations; (ii) knowledge 

of student thinking—both current and anticipated, together with knowledge of likely 

misconceptions; and (iii) the capacity to assess the cognitive demand of a task.  

Bills et al. (2006, p.138) suggest that there is a scarcity of research on teachers’ choice 

of examples. Zazkis and Chernoff (2006) describe a situation where a researcher taught a 

student about prime numbers through choosing strategic examples, with the teaching 

situation such that examples had to be generated spontaneously rather than being planned 

in advance. This clearly relied on the researcher’s deep understanding of prime and 

composite numbers and the ability to construct examples that were appropriate for the 

student’s needs. Zaslavsky, Harel, and Manaster (2006) examined the mathematical 

knowledge brought into play by a teacher introducing Pythagoras’ Theorem to students on 

two different occasions. On the first occasion the cases chosen were intended to build up to 

the general result and reflected the teacher’s understanding of geometrical configurations 

that are useful for Pythagoras’ Theorem. On the second occasion the physical constraints of 

the way she had set up the examples—needing all sides to be integers—reduced the 
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number of examples that could be given and may have affected the students’ capacity to 

see the entire generalisation. Little has been done to investigate more specific aspects of 

PCK; this is part of the purpose of the present study. 

Finally, it should be noted that many researchers have actually used examples to probe 

PCK. Hill and colleagues (Hill, Rowan, & Ball, 2005; Hill, Schilling, & Ball, 2004) have 

used multiple-choice questions that require teachers to examine a situation—a specific 

instantiation of a general scenario, involving a particular mathematical problem—and 

identify appropriate content- or pedagogically-based responses. Watson, Beswick, and 

Brown (2006) used a particular fraction/ratio problem to probe teachers’ content 

knowledge, with follow-up questions investigating teachers’ knowledge of students’ likely 

thinking, including misconceptions, and their possible approaches for teaching the topic or 

remediating difficulties. The project from which the present research is drawn also used 

teaching situations based on specific examples to probe different aspects of teachers’ PCK 

(see Chick & Baker, 2005a; Chick, Baker, et al., 2006; Chick, Pham, & Baker, 2006). In all 

cases the examples used were designed carefully in order to reveal general rather than 

specific aspects of the levels of PCK held by the teachers. 

The Focus of this Paper and the MPCK Project 

The current study considers some of the examples used by upper primary teachers. The 

intention is to examine the affordances inherent in the examples, and the way in which the 

teachers implement them to turn them into didactic objects. This examination provides 

insights into the teachers’ PCK, and what needs they may have for developing it, 

particularly in regard to example choice. Although the examples are from the primary 

curriculum, it is anticipated that there are general principles that apply for teachers of other 

age groups.  

The data for this study were collected as part of the ARC-funded Mathematical 

Pedagogical Content Knowledge project. This project involved fourteen Grade 5 and 6 

teachers who volunteered to participate over a one- to two-year period. Part of the project’s 

purpose was to examine teachers’ PCK and how it is enacted in the classroom. A 

questionnaire and follow-up interview were used to gather initial data, and then pairs of 

lessons were observed and video-taped. The two lessons were on the same topic and 

conducted consecutively, with the teacher nominating the topic for observation. Up to four 

such pairs of lessons were recorded for each teacher. During the lessons the video-camera 

focused on the teacher, and the teacher’s words were recorded via a wireless microphone 

that was sensitive enough also to record some student utterances. Field notes were also 

made. Following each pair of lessons, the teacher was interviewed about the original plans 

for the lessons, perceptions of successes and difficulties, changes and adaptations made, 

and future follow-up plans.  

Several of the pairs of lessons involved fractions, and these lessons were subjected to a 

“content analysis” approach (Bryman, 2004), in which individual examples that arose in 

the classroom were identified, according to the definition of “example”, and then 

categorized according to the way in which the teacher used it. This identified, for instance, 

whether the example was used as a teacher demonstration, or as a student task; or whether 

the example focussed on conceptual or procedural matters. From this data, and from data 

from three other pairs of lessons on other topics (probability, and measurement) several 

illustrative cases were selected to allow comparisons among the ways in which tasks were 

used, the affordances they offered, and the PCK involved. The purposeful selection of these 
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cases makes them what Bryman (2004, p. 51) calls exemplifying cases, which are used for 

the purposes of a multiple-case comparative study. 

There are, of course, some caveats about what can be learned from such a research 

design. Although information about teachers’ intentions was obtained from the post-lesson 

interviews, these interviews were wide-ranging and did not always focus on examples per 

se. Consequently the teachers’ purposes have, at times, been inferred from their 

implementations and classroom actions. Furthermore, it is easy, as an outside observer with 

the benefit of repeated video viewings, to see alternative options that teachers might have 

utilised to good effect. It is, however, important to acknowledge the complex milieu of the 

classroom, the speed with which some decisions must be made, and that, in these cases, 

mathematics is not the only area of the curriculum that primary teachers must teach. 

Three Sets of Examples 

This section describes three sets of examples that highlight important issues associated 

with example choice, affordances, and PCK. As explained earlier, the examples were 

purposefully selected from the lessons of eight of the MPCK teachers (names are 

pseudonyms), from nine of their pairs of lessons. The examples were chosen for what they 

illustrate qualitatively rather than to reflect any quantitative assessment about either the 

types of examples used in general or by a particular teacher. The scale of the examples 

varies, ranging from an assigned computational exercise through to an extended problem 

that the teacher utilised to illustrate a wide range of mathematical concepts. The 

pedagogical implications—such as the affordances offered by the examples described, and 

the PCK evident or missing in the choice and implementation of the examples in the 

classroom—are also examined. 

Fractions 

Six of the teachers presented pairs of lessons on fractions. In some cases their focus 

was on the meaning of a fraction, whereas in others they addressed fraction operations. In 

the majority of these lessons the teachers used many “small” examples, usually illustrations 

of particular fractions or exercises for students to solve. A range of these are presented here 

to show what examples were chosen and how the teachers used them, with discussion on 

what the examples might have afforded and what PCK was evident. 

Cake halving. Meg used a square cake and repeatedly halved it, emphasising that the 

cake is the “whole” and remains the same quantity, but that the pieces were getting smaller. 

She also clarified the terms numerator and denominator. A student wrote the associated 

unit fractions on the board, finishing with 
1
/32, and Meg emphasised that as the pieces get 

smaller the denominator gets bigger. 

The idea of “cake cutting” has the potential to model almost any fraction, not just those 

with a power of two for a denominator nor just unit fractions. Meg’s repeated halving 

allowed students to see some atypical primary school fractions, such as 
1
/16 and 

1
/32, but 

omitted many other unit fractions. Furthermore, her emphasis on unit fractions allowed a 

focus on the relationship of the denominator to the size of the piece, but prevented a deep 

examination of the meaning of the numerator. Although there is no evidence that this 

caused problems for these students, a well-known misconception is that students will, for 

example, regard 
2
/5 as bigger than 

6
/7 because fifths are bigger than sevenths. Meg may not 

have been aware of this particular misconception, or, if she was, may not have seen that 
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although her emphasis on the relationship between the denominator and the size of the 

pieces was important it had the potential to lead to such a problem. Finally, the emphasis 

on halving appeared to interfere with later examples involving thirds and fifths.  

Aero bar. Irene began her introduction to fractions with a KitKat chocolate bar, which 

allowed her to talk about quarters and emphasise the meaning of numerator and 

denominator. She also used a piece of paper torn into four pieces to illustrate the 

importance of having equal parts. Her next example used an Aero chocolate bar, which has 

seven pieces. She broke off three pieces and asked what fraction would represent how 

much she had. This example allowed her to illustrate sevenths, a denominator different 

from the familiar halves, quarters, and thirds. She also pointed out that sevenths are 

difficult to show with the “pizza” model of fractions. 

Irene’s choice of chocolate to model fractions suggests knowledge of how to “get and 

maintain student focus”. In addition, by beginning with the four-piece KitKat she could 

model the familiar quarters, and then use torn paper to emphasise the importance of equal 

pieces, which had been implicit rather than explicit in the chocolate bar. The KitKat 

example provided an appropriate segue into the Aero bar, which allowed a “real world” 

example of sevenths, and Irene also emphasised the role of the numerator. There is a 

disadvantage in using the two different chocolate bars in that they are not suitable for 

making comparisons of quarters and sevenths; nevertheless, the chocolate bar models were 

suitable for the purposes to which Irene put them. 

Smarties. After an initial review of fraction terminology and the use of a circle divided 

into three unequal pieces to emphasise the importance of equal parts, Jill used discrete 

materials rather than continuous materials to reinforce fraction notation. Students counted 

the numbers of each colour in small boxes of Smarties, and expressed this as a fraction of 

the total number of Smarties in the box. They also had to create a fraction strip on grid 

paper to show the fractions obtained, by dividing the strip into equal parts representing the 

total number of Smarties and then colouring in the relevant proportions. Unfortunately this 

model then caused problems when Jill tried to illustrate addition of fractions with the same 

denominators. She used an example of one person having 12 out of 14 orange Smarties and 

a second person having three out of 14 orange Smarties and added these as fractions to get 
15

/14 (since there is a “common denominator”), before she turned this improper fraction into 

a mixed number. The problem here, however, was that the situation implies that there were, 

in fact, 28 Smarties involved. Jill acknowledged that there were actually two boxes of 

Smarties but told students to treat them as one box.  

In theory, at least, the box of Smarties can be used to model fractions, but great care 

needs to be taken about identifying the “whole”. Jill did not give this concept enough 

emphasis, with the added difficulty that the number of Smarties per box can vary. Jill knew 

about the latter problem and attempted to address it, but the former issue made modelling 

fraction addition difficult. In this case, the model/example was inadequate or did not have 

the level of epistemic fidelity needed to deal successfully with addition of fractions, despite 

the fact that it was suitable for simply representing fractions. 

Fraction wall. Meg used the well-known “fraction wall” idea, and asked students to 

fold equal length strips into different numbers of parts. Obtaining halves, quarters, and 

eighths was easy, especially after the earlier cake-halving demonstration. Thirds were a 

little harder to fold (and some students anticipated that she would ask for sixteenths next), 

and then when Meg asked them what fraction they could find next, many students 
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suggested fifths, whereas Meg had been thinking of halving again to get sixths. Fifths 

required even more adeptness at folding, and in the end Meg and some of the students 

resorted to measuring and calculating the lengths, a task made easier by the fact that the 

strip was 20cm long. Students did tenths next, and Meg made a conscious decision not to 

tackle sevenths because of the challenge of finding a strategy for folding the paper into 

seven. This meant that the students’ fraction walls had all the fractions up to eighths and 

tenths, with the exception of sevenths and ninths.  

Since the fraction wall model for fractions uses strips of equal width to build up a wall, 

the fractional parts are represented both by area and by length. It is a powerful model for 

comparing fractions, and can also highlight equivalent fractions. Meg’s chosen sequence of 

fractions to make (halves, quarters, then eighths; thirds, then sixths, fifths and finally 

tenths) echoed her focus on halving as implemented with the cake-cutting activity earlier in 

the same lesson. There was no detailed discussion, however, of how halving the thirds 

gives sixths, thus missing an opportunity to strengthen connections between the ideas of 

halving and doubling. The omission of sevenths and ninths, which Meg acknowledged as 

being a consequence of time constraints and the difficulties of folding, may have reduced 

the students’ capacity to generalise the fraction concept from the examples given. 

Comparing fractions. Lisa had previously done work on equivalent fractions, which 

provided a foundation for her two lessons on comparing fractions. She began with a pizza 

comparison, asking students to decide who ate more if one person ate half a pizza and the 

second person ate four pieces of a pizza that had been cut into ten pieces. Students then had 

to generate fractions using a deck of cards, by selecting pairs of cards to generate the 

numerator and denominator of a proper fraction, and then comparing two fractions thus 

obtained. This led to some challenging problems, in one case involving twelfths and 

sevenths, which caused difficulty for some students. Prior to the second lesson she asked 

students to compare 
2
/5 and 

1
/3 for homework, and in the second lesson had students show 

how they had used equivalent fractions to make the comparison. She also showed how the 

equivalent fractions could be modelled on a fraction bar, giving a very careful discussion of 

how the fifths on a fraction bar could be turned into fifteenths by dividing each part into 

three. 

Lisa’s pizza consumption example provided a relatively simple context for looking at 

comparison of fractions and equivalent fractions, where one denominator was a multiple of 

the other. Her use of a deck of cards for generating fraction comparison problems 

introduced a random element to the tasks, and meant that she lost control of what kind of 

denominator relationships would arise. It is not clear that this was because she did not 

realise that denominator relationships might be important, or that the task, as designed, 

would affect them. The consequence was that some students had to grapple with quite 

difficult comparisons (such as twelfths and sevenths), which may have been too cognitively 

demanding for them. On the other hand, the choice of 
2
/5 and 

1
/3 for the homework task was 

more manageable, and afforded the opportunity to relate the problem situation to both the 

equivalent fraction calculations and to a model used to represent them. The choice of 

values is particularly good for this purpose: the two fractions are sufficiently close that 

comparing them demands an equivalent fractions strategy, rather than being obvious 

through visualisation; the values for the denominators make the calculation and 

representation of the equivalent fractions achievable yet still suitably cognitively 

demanding for the students; and the conceptual connections can be highlighted. 
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Exercises with fraction operations. The lessons that focused on fraction operations had 

a strongly procedural rather than conceptual orientation. Frank’s lesson was purportedly a 

revision lesson, focusing on all four of the fraction operations. He used the example 
1
/6 + 

3
/6 to illustrate addition of fractions with the same denominator, without commenting 

that 
3
/6 is, in fact, 

1
/2, or that the final answer of 

4
/6 can be simplified as 

2
/3. A later exercise 

for students was 5
1
/2 – 2

7
/12 which Frank expected students to solve by converting the 

mixed numbers to improper fractions and then finding common denominators if necessary. 

When one student explained that she had subtracted the whole numbers first, found an 

appropriate equivalent fraction for the half, and successfully regrouped after realising that 
7
/12 could not be subtracted from 

6
/12, Frank’s response was to suggest 5

1
/2 – 2

7
/19 as an 

example that might be difficult to attempt using such a strategy, implicitly privileging the 

“convert to improper fractions” method. 

A second teacher, Brian, provided students with some exercises for converting from 

mixed numbers to improper fractions. There were four examples written on the board, 

1
4
/10, 7

3
/4, 5

3
/6, and 8

9
/12, with three not in their simplest form. His emphasis was on the 

procedure for converting to improper fractions. The non-simplified nature of the fractions 

was not discussed, either before or after the conversion. 

Both Frank and Brian demonstrated sound procedural knowledge. The focus, however, 

seemed to be on one concept at a time, ignoring other concepts that were evident in the 

example, as evidenced in Frank’s 
1
/6 + 

3
/6 addition problem and three of Brian’s mixed 

numbers problems, where the concept of equivalent fractions was overlooked. Here 

connections among concepts were not being established or reinforced; each process—

equivalent fractions, operations with fractions, converting among forms—appears to exist 

in isolation.  

Frank’s impromptu construction of the example 5
1
/2 – 2

7
/12 was intended to illustrate a 

situation where it might be difficult to subtract using the fractions in their mixed form 

rather than converting to improper fractions. Although it made the denominators harder to 

work with, the resulting example was, in fact, easier to solve using mixed numbers, given 

that the new choice of numerators actually eliminated the need to regroup. This suggests 

that whereas Frank could determine some of the cognitive demand of a problem, he could 

not quickly work his way through the consequences for the example in its equivalent form. 

In particular, he could not identify which were the salient pieces of the example to vary. 

Probability 

The next example, first discussed by Chick and Baker (2005b), comes from the topic of 

probability. Irene, an experienced teacher, and Greg, who was in only his second year of 

teaching, were Grade 5 teachers in the same school. They had chosen to use a spinner game 

worksheet activity suggested in a teacher resource book (Feely, 2003). The spinner game 

used two spinners divided into nine equal sectors, labelled with the numbers 1-9. The 

worksheet instructed students to spin both spinners, and add the resulting two numbers 

together. If the sum was odd, player 1 won a point, whereas player 2 won a point if the sum 

was even. The first player to 10 points was deemed the winner. Students were further 

instructed to play the game a few times to “see what happens”, and then decide if the game 

is fair, who has a better chance of winning, and why (Feely, 2003, p. 173). The teacher 

instructions (Feely, 2003, p. 116) included a brief suggestion about focusing on how many 

combinations of numbers add to make even and odd numbers but did not provide any 
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additional direction. The “example” in this case is the spinner game in its particular 

configuration. 

Before examining what the teachers did in the classroom, it is informative to look at the 

affordances of this example. Careful consideration reveals that it affords worthwhile 

learning opportunities associated with sample space, fairness, long-term probability, 

likelihood, and reasoning about sums of odd and even numbers. The significant issue here, 

especially in the absence of explicit guidance from the resource book about how these 

issues can be brought out, concerns the choices that teachers make when implementing this 

activity; especially in terms of what they allow it to exemplify. To add to the complexity of 

what is already a conceptually rich example, the configuration of the spinners generates an 

interesting difficulty that could undermine the activity or could be turned to advantage, 

depending on how it is addressed. This difficulty arises because the chances of Player 2 

(even) winning a point is 
41

/81 compared to 
40

/81 for Player 1 (odd), as revealed by analysis 

of the sample space. This miniscule difference in likelihood implies that the game’s 

unfairness is unlikely to be convincingly evident when playing “first to ten points”.  

The interest is in how the teachers implemented the activity in the classroom, and in 

what they allowed it to exemplify and what students might have learned from it. Irene 

preceded her use of the game by getting students to toss a coin 100 times and record the 

number of heads and tails, with pairs of students starting to play the spinner game as soon 

as they had completed their 100 tosses. This meant that some students had more time to 

engage with the game than others, and that some of the important teaching moments 

occurred for small groups of students rather than the whole class. Most students had played 

the game for a few minutes before Irene interrupted them for a discussion of the coin 

tossing results and then the spinner game. Her focus here was really on the coin tossing 

results, and time constraints limited the attention given to the spinner game. Nevertheless, 

some of its attributes were addressed. She asked the class if they thought it was a fair game. 

Discussion ensued, as students posed various ideas without any of them being completely 

resolved. For instance, there was a brief discussion about how the “structure” of the game 

needed to be fair, implying that fairness means that as long as the two players play by the 

rules of the game then they should have an equal chance of winning. Most of the arguments 

about fairness were associated with the number of odds and evens, both in terms of the 

individual numbers on the spinners (there are more odds than evens on each spinner) and in 

terms of the sums. One student neatly articulated the erroneous parity argument, that since 

“odd + odd = even and even + even = even but odd + even = odd, therefore Player 2 has 

two out of three chances to win”. Irene said she was not convinced about the “two out of 

three”, but she agreed the game was unfair. Irene then allowed one of the students to 

present his argument. At the start of the whole class discussion this student had indicated 

that he had not played the game at all but had “mathsed it” instead, and at that time Irene 

made a deliberate decision to delay the details of his contribution until the other students 

had had their say. He proceeded to explain that he had counted up all the possibilities, to 

get 38 for even and 35 for odd. Although this was actually incorrect Irene seemed to 

believe that he was right and continued by pointing out that this meant that “it’s not terribly 

weighted but it is slightly weighted to the evens”. Irene then asked the class if their results 

bore this out, and highlighted that although the game was biased toward Player 2 this did 

not mean that Player 2 would always win. 

Greg spent a much longer time on the spinner game. The students played it at the end 

of the first of the two observed lessons, and during the course of their exploration of the 
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game a few pairs came up with the parity argument, accompanied by the observation that 

there are more odd numbers on the spinners. That lesson concluded with an extensive 

discussion of whether or not the game was fair. Greg did not indicate whether or not he 

thought the students’ suggestions were correct; he seemed to want to hear all the 

contributions. He later asked if any of the students had considered all the possible 

outcomes, and suggested that this would something they would look in the next lesson. In 

the post-lesson interview Greg told the researchers that the decision to explore sample 

space was made only during the first lesson while students were already working on the 

task. He also acknowledged that when he chose the activity he was not sure of all that it 

offered.  

Greg then devoted nearly half of his second lesson to an exploration of the sample 

space. As reported in Chick and Baker (2005b) he tightly guided the students in recording 

all the outcomes and could not deal with alternative approaches. He asked the students to 

calculate the probabilities of particular outcomes, which was helpful in highlighting the 

value of enumerating the sample space, but detracted from the problem of ascertaining 

whether even or odd outcomes were more likely. Students eventually obtained the “40 odds 

and 41 evens” conclusion, at which point Greg stated that because the “evens” outcome 

was more likely the game was unfair. There was, however, no discussion of the narrowness 

of the margin. 

It must be noted that in both classes the students did not—could not—play the game 

long enough for the unfairness to be genuinely evident in practice, yet most students 

claimed that the game was biased towards even. This may have occurred because the 

incorrect parity argument made them more aware of the even outcomes than the odd ones.  

As suggested earlier, the spinner game provides the opportunity to examine sample 

space, likelihood, and fairness. Given the impact of time constraints on Irene’s lesson, 

sample space was not covered well, although she believed that the student who had 

“mathsed it” had considered all the possibilities. This highlights a contrast between her 

knowledge of his capabilities and the details of the content with which he was engaged. On 

the other hand, her content knowledge was sufficient for her to recognise the significance 

of the small difference between the number of odd and even outcomes and its impact on 

fairness. Greg was much more thorough in his consideration of sample space, but also very 

directive. He seemed constrained by his content knowledge, having only one way to think 

of the sample space—via exhaustive enumeration—and was unable to recognise the 

possibility of an alternative approach in one of his students’ erroneous suggestions.  

Neither teacher seemed aware of all that the game afforded in advance of using it, as 

evidenced by the way it was used, although Greg recognised the scope for examining 

sample space part way through the first lesson. Both teachers were, however, able to bring 

out some of the concepts in their use of the game, with Irene having a good discussion of 

the meaning of fairness and the magnitude of the bias, and Greg illustrating sample space 

and the probability of certain outcomes.  

An important observation needs to be made here. The teacher guide that was the source 

of the activity gave too little guidance about what it afforded and how to bring it out. Even 

if such guidance had been provided, there is also still the miniscule bias problem inherent 

in the game’s structure that affects what the activity can afford. It is very difficult to 

convincingly make some of the points about sample space, likelihood, and fairness with the 

example as it stands. It can be done, but the activity probably needs to be supplemented 

with other examples that make some of the concepts more obvious (see, e.g., Baker & 

Mathematics: Essential Research, Essential Practice — Volume 1

13



Chick, 2007). This highlights the crucial question of how can teachers be helped to 

recognise what an example affords and then adapt it, if necessary, so that it better 

illustrates the concepts that it is intended to convey.  

Area and Perimeter 

The final case involves Clare, a Grade 6 teacher with five years’ experience. She 

conducted two lessons focussing on area and perimeter simultaneously, having done work 

in the past on each separately. Part of her first lesson is presented here in detail, to highlight 

the way the actual implementation of an example in the classroom may develop in 

unanticipated ways and to indicate how important PCK is in dealing with this. 

Clare began by reviewing the concept of area, where she emphasised that “Area 

measures the space inside a shape, so what that actually is, is the number of squares inside 

the shape”. She then asked students to draw a rectangle with an area of 20cm
2
 on grid paper 

and cut it out. Her choice of what might be called an open “reversed” task was appropriate 

given that the students had worked with area before, including the area formula for 

rectangles. Shortly after this instruction the following exchange took place between Clare 

and a student.   

S:  Can I do a square? 

Clare: Is a square a rectangle? […] What’s a rectangle? […] How do you get 

something to be a rectangle? What’s the definition of a rectangle? 

S:  Two parallel lines 

Clare: Two sets of parallel lines … and … 

S:  Four right angles. 

Clare: So is that [points to square] a rectangle? 

S:  Yes. 

Clare: Excellent. [Pause] But has that got an area of 20? 

S:  [Thinks] Er, no. 

Clare: [Nods and winks] 

It is not clear whether Clare’s original choice of 20 was made with any awareness of 

geometrical implications, but the fluency with which Clare moved from area measurement 

to spatial issues—addressed with clear attention to geometrical properties—and back again 

required ready access to the PCK of both the measurement and spatial domains. She also 

exhibited effective use of questioning to elicit understanding from the student. Shortly after 

this she discussed rectangle properties with the class. 

Clare then invited a student to bring his 4×5 cut-out rectangle to the front of the class, 

recorded it on an overhead transparency, and confirmed that its area was 20cm
2
. She led a 

class discussion on how multiplying length × width is the same as counting squares and 

hence gives the area. Clare thus used the concrete example to highlight the link between 

the conceptual meaning of area and the procedural calculation. She did not stop there, 

however; in the following exchange it can be seen that Clare knew that students need to 

know that the area formula L×W only applies to certain shapes. 

Clare:  When [S1] said that’s how you find the area of a shape, is he completely 

correct?  

S2: That’s what you do with a 2D shape. 
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Clare: Yes, for this kind of shape. […] What kind of shape would it not actually 

work for? 

S3: Triangles. […] 

S4: A circle. 

Clare: [With further questioning, teases out that L×W only applies to rectangles.] 

A student then suggested 2×10 as a second example of a rectangle with area 20cm
2
, at 

which point Clare confirmed that all the students had chosen either this one or the 4×5 

case. When she asked for other possibilities the students suggested the original examples 

but oriented at 90°, together with 1×20, which had not been suggested earlier. With all the 

integer-sided rectangles on display Clare asked the students to look for a pattern in the 

examples found, which led into a discussion of factors of 20. She continued: 

Clare: Are there any other numbers that are going to give an area of 20? [She 

paused, with an attitude of uncertainty. There was no response from the 

students at first.] 

Clare: No? How do we know that there’s not? 

S: You could put 40 by 0.5. 

Clare: Ah! You’ve gone into decimals. If we go into decimals we’re going to have 

heaps, aren’t we? 

It appeared that she was targeting only whole numbers—and, as a consequence, some 

argument about exhausting the factors of 20—but she clearly understood the significance 

of the student’s unexpected answer, and to what degree it would apply. The open scope of 

her questions allowed this extension to arise, even though it had not been her original 

intention; however, she made a decision not to pursue this aspect—even though it would 

have been a valuable use of the 20cm
2
 example—because she wanted to move on to 

different examples that would highlight other relationships. Instead she used the 20cm
2
 

example to focus on the search for all factors of 20.  

This exploration of the 20cm
2
 example took the first 15 minutes of the lesson. Clare 

then had students repeat the search for rectangles with area 16cm
2
. She used this example 

to highlight the process of systematically searching for factors, and to highlight the set 

inclusion property “a square is a rectangle”. She recapped that they had been working on 

areas, and then reminded students about perimeter, how to work it out for rectangles, and 

that linear rather than square units are involved. She guided the class to work out the 

perimeters of the different 16cm
2
 rectangles they had found, and indicated that although 

shapes might have the same area they do not have to have the same perimeter. She revisited 

the 20cm
2
 examples they had, and calculated the perimeters to focus again on the variation 

in perimeter.  

The final example/task for the lesson was for students to work in groups to find as 

many shapes—not just rectangles, but constrained by being made of contiguous squares—

with an of area 12 cm
2
 and determine the perimeters. She wrote “What is the relationship 

between area and perimeter?” on the board as a learning objective for this activity. She 

allowed students to explore the task for about five minutes, then interrupted their work to 

help them develop strategies to work systematically and instruct them to record the 

perimeters of each shape. About 20 minutes later, she held another class discussion that 

acknowledged that there were “heaps” of possible shapes, looked at one group’s systematic 

work and discussed some symmetry implications, and then asked students to focus on 
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finding a shape with the greatest perimeter and one with the smallest perimeter. The 90-

minute lesson concluded with a ten-minute discussion of the students’ results, which 

emphasised the use of linear units for perimeter, that shapes with small perimeters were 

more “compact”, and that moving one of the squares on a shape without changing the 

number of joining edges will not change the perimeter.  

Clare’s conclusion re-emphasised the points of her lesson: that area and perimeter can 

have the same or different numerical values, that two shapes with the same area can have 

different perimeters, and that systematic work can help find all the possibilities in a 

problem. These learning outcomes were achieved through the use of just three examples 

that had been carefully chosen to illustrate these points. 

Clare seemed to have a very clear idea about what she wanted her examples to achieve. 

They were effective as didactic objects for two reasons: Clare’s careful choice of the 

examples themselves and then the way she facilitated conversations about them. It is not 

clear that there was a purposeful reason for considering rectangles of area 20cm
2
 first, 

followed by those of area 16cm
2
; in particular, it is uncertain that there was an intention to 

allow discussion of “squares are rectangles” in the second case after just focussing on non-

square rectangles. However, whether it was an intended focus or an opportunity that arose 

fortuitously, Clare was able to address this geometric concept fluently, demonstrating her 

capacity to make connections across topics. The final extension considered shapes of area 

12cm
2
. If only considering rectangles this would have been no more difficult than what 

students had already done—and potentially redundant—but because she wanted students to 

consider other shapes as well, it was appropriate to pick this “simpler” number. 

Interestingly, given the magnitude of the enumeration task, there is potential to debate 

whether 12 is, in fact, simple enough. One of the researchers observing the lesson at the 

time wondered if she had chosen wisely. As the lesson progressed, however, it was clear 

that although she wanted to address the issue of enumerating all possible shapes 

systematically, her main focus was still associated with area and perimeter, and the choice 

of 12 allowed enough variety of shapes to make it a non-trivial task to find those with the 

greatest and least perimeter.    

There was an interesting decision point that arose in the lesson when a student gave the 

40×0.5 rectangle example. It seemed that Clare’s focus on factors influenced her decision 

to acknowledge this response, briefly recognise its implications, but then continue with 

whole number dimensions. It is not clear whether she weighed up (a) what concepts could 

have been developed if she had detoured with an exploration of non-integer dimensions, 

(b) how such a detour might have interfered with her goals for the lesson, and (c) whether 

or not all her students would have been capable of following the detour. Certainly such an 

exploration could have given more extreme perimeter values than the students obtained, 

but the importance of identifying factors of numbers might have been obscured. 

The strength of Clare’s PCK was evident as the lesson progressed, as well as in her 

responses to the questionnaire and interviews (see Baker & Chick, 2006). She appeared to 

have a deep understanding of concepts, the rich connections among them, and the links 

between concepts and procedures. Her conceptual fluency was evident in the ease with 

which she responded to unanticipated events in the classroom. In addition to specific 

content knowledge she advocated general mathematical principles, such as the need to 

work systematically, and to justify and explain results. Her knowledge of student thinking 

was evident in her identification of likely misconceptions, and in knowing how to ask 

questions and respond to students’ difficulties. Finally, her choice of examples had 
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appropriate cognitive demand for her students, led to conceptual understanding, and 

afforded exploration of a range of mathematical concepts. 

Conclusions 

For most of these cases, the teachers selected the example’s structure and specific 

values prior to implementing it in the classroom, strongly influenced by their PCK and 

what affordances they thought the example offered. At times, though, teachers had to 

develop or respond to an example on the spot; but again their capacity to do so was 

affected by their PCK and their ability to construct or recognise examples with the 

affordances required. It is worth making some observations about the source of the 

examples and the PCK for some of these situations, in order to highlight the complexity 

associated with this critical issue. 

• A teacher’s current level of PCK can allow him/her to recognise a situation that 

could be turned into a useful example, as evident in the use of the Aero bar. 

• A teacher’s current level of PCK may allow him/her to devise a partly 

appropriate example, but deeper PCK would reveal that it has limitations. This 

occurred with the Smarties and with Frank’s fraction subtraction example. 

• Professional development (PD) can enhance PCK and a teacher’s repertoire of 

examples. The fraction wall and the paper strip folding activities conducted by 

Meg had their origins in PD and reflected, in her paraphrased words, part of a 

change in her teaching style from a procedural focus to a conceptual one. That 

said, however, a teacher’s implementation of an example demonstrated to 

him/her in PD may not always reflect the potential affordances identified by the 

PD designers. The omission of the sevenths and ninths was Meg’s choice; most 

advocates of the fraction wall would include these examples. 

• External sources of examples do not always indicate the affordances of the 

example and how to implement them. This was strikingly evident in the case of 

the spinner game. It cannot be assumed that teachers do not or should not need 

this support. 

• A teacher’s current level of PCK and his/her identification of affordances can 

develop in the process of implementing an example. This occurred for Greg as 

he used the spinner game. Moreover, he recognised this development as such. 

• A teacher with rich PCK can devise examples that illustrate a range of concepts, 

can highlight connections among topics, and identify which are the central ideas 

and which are peripheral. This was evident in Clare’s area and perimeter 

examples. 

The complexity of mathematical concepts, together with the limited opportunities that 

teachers have to master all these concepts and their pedagogical implications before 

entering the classroom, highlight how difficult it is to ensure that teachers have the depth of 

PCK required to identify and draw out the affordances of an example. Recognising the 

ways in which “Compare 
2
/5 and 

1
/3” is different from “Compare 

3
/7 and 

5
/8” and the 

consequent implications for what might be learned, for instance, requires attention to a 

range of fraction issues followed by a decision about which aspects are regarded as more 

important for the day’s teaching objectives.  

These observations raise the question of how to prepare future teachers so that they 

develop adequate PCK and can successfully choose, use, and modify examples. Clearly 
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there must be an endeavour to ensure that teachers have a deep conceptual understanding of 

mathematics, and rich PCK for its teaching. Given the centrality of examples to the 

teaching and learning process, however, time also needs to be spent applying this 

understanding to an investigation of examples and their pedagogical implications. We need 

to develop ways to help teachers identify more potential affordances in examples, to 

recognise an example’s salient and non-salient features, and to ascertain the implications of 

any interrelationships that exist.  

This suggests that teacher education and professional development opportunities must 

be more explicit about the issues associated with example use. In particular, the 

affordances of the examples used in teacher education and professional development 

should be identified and discussed, so that teachers learn to realise that an example has 

many potential affordances and to discriminate between the productive and the 

unproductive. There is a need to identify the dimensions of possible variation for an 

example, so that the impact of changes to the particular values and structure can be 

considered, and the significant and extraneous components of the example can be 

identified. This is essential if teachers are to learn how to change examples to make them 

conceptually harder or easier, to produce counterexamples, or to emphasise a different 

principle. Indeed, teachers and potential teachers need opportunities to engage with 

examples, to trial them, and to learn how to adapt them successfully to meet different 

needs. It would be valuable to have teachers contrast examples, attending to affordances 

and what varies between the examples (the earlier illustration of examining the ways in 

which “Compare 
2
/5 and 

1
/3” is a different example from “Compare 

3
/7 and 

5
/8” is a case in 

point). In all of this, there needs to be deeper discussion of the connections among 

mathematical topics and how an example illuminates these connections. Finally, there must 

be discussion of how to implement the examples in the classroom, so that the examples 

become successful didactic objects that illustrate the desired general principle. Without 

this, the opportunities for learning afforded by examples may go unfulfilled. 
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Appendix 1. 

A Framework for Pedagogical Content Knowledge (after Chick, Baker, et al., 2006). 

PCK Category Evident when the teacher … 

Clearly PCK  

Teaching Strategies Discusses or uses general or specific strategies or approaches 

for teaching a mathematical concept or skill 

Student Thinking Discusses or addresses student ways of thinking about a 

concept, or recognises typical levels of understanding 

Student Thinking - Misconceptions Discusses or addresses student misconceptions about a concept 

Cognitive Demands of Task Identifies aspects of the task that affect its complexity 

Appropriate and Detailed 

Representations of Concepts 

Describes or demonstrates ways to model or illustrate a 

concept (can include materials or diagrams) 

Explanations Explains a topic, concept or procedure 

Knowledge of Examples Uses an example that highlights a concept or procedure 

Knowledge of Resources Discusses/uses resources available to support teaching 

Curriculum Knowledge Discusses how topics fit into the curriculum 

Purpose of Content Knowledge  Discusses reasons for content being included in the curriculum 

or how it might be used 

Content Knowledge in a Pedagogical Context 

Profound Understanding of Fundamental 

Mathematics (PUFM) 

Exhibits deep and thorough conceptual understanding of 

identified aspects of mathematics  

Deconstructing Content to Key 

Components  

Identifies critical mathematical components within a concept 

that are fundamental for understanding and applying that 

concept 

Mathematical Structure and Connections Makes connections between concepts and topics, including 

interdependence of concepts 

Procedural Knowledge Displays skills for solving mathematical problems (conceptual 

understanding need not be evident)  

Methods of Solution Demonstrates a method for solving a mathematical problem 

Pedagogical Knowledge in a Content Context 

Goals for Learning Describes a goal for students’ learning 

Getting and Maintaining Student Focus Discusses or uses strategies for engaging students 

Classroom Techniques Discusses or uses generic classroom practices 
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