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The traditional long division assumes that users can apply a guess-and-match type mental
process of searching for a maximum that is not greater than the dividend. This
optimisation procedure frustrates some children because it confuses the concept of division
that is embraced is not consistent with their life experiences associated with grouping and
sharing. Initial results of our studies suggest that children taught by a new method perform
better on a test than those who learn it through the traditional method.

Introduction

Teaching early grade students about the concept of division and the skill of performing
a division algorithm is always a challenge to teachers. There are many studies which
consider children’s understanding of division in early elementary grades. The most common
approach they learn for solving a computational division problem is the Long Division
algorithm. It is well known that a student may perform correctly the long division and get
the correct answer without knowing the essential meaning of division. Many teachers
introduce division as a process of sharing (Liebeck 1990). The rules governing such a
procedure of sharing, relate to groupings (Squire & Bryant 2003). During grouping, we
must ask two fundamental questions: how many groups are involved in the sharing and
how many can each group get? Traditionally, these approaches are termed “partition” and
“measurement”, respectively, although sometimes “quotation” is used instead of
“measurement”. Squire and Bryant (2002) investigated the influence of sharing on
children’s concepts of division by testing their ability to apply grouping within the divisor
or within the quotient, considering the fundamental concepts of divisions by partition and
measurement. We can summarise this in Table 1.

Table 1 Division by Partition and Measurement
Traditional Question Name of Approach Example

a + b is interpreted to mean: “Measurement” 12 divided by 3 equals

“From the a objects, how . 4 because the 12 can be
(sometimes referred

many groups of b objects can « - divided into 4 lots with
s to as “quotition”) . .

we form? 3 objects in each.

a + b is interpreted to mean: 12 divided by 3 equals

“If a objects are placed in b T ties 73 4 because if 12 objects

. Partition
equal groups, how many will are dealt to 3 people
there be in each group” then each would get 4.
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Zweng (1964) introduced the concept of rate to study how well children learned
division in contexts that involved the measurement and partition interpretations of the
operation (see Table 1). In performing a formal division such as48+6, Robinson,
Arbuthnott and Gibbons (2002) showed that adults tended to transform the division to
multiplication by retrieving the product of 6 and 8 that is equal to 48. Ilg and Ames (1951)
found that children might use related addition facts to solve division problems. Lakoff and
Nunez (2000) noted that children conceptualized division in two ways: repeated
subtraction and splitting objects into groups. Robinson and her colleagues (2005) reported
that Grade 4 children used a repeated addition strategy and Grade 5 to 7 students
performed division more by using a multiplication strategy. They referred to the division
problem as a multiplication problem looked for the product of divisor and quotient to
match the dividend. It was suspected that children might only infrequently access
information they need from their times table because they had ‘blind spots’ in their times
table knowledge.

Even though there have been several studies into how children deal with the meaning of
division, procedurally and conceptually, many researchers find that teaching early-grade
students about the concept of division is still a challenge to teachers, as they tend to
perceive division as a process of sharing something that can be counted (e.g., Cowan &
Biddle 1989; Miller 1984). From both computational practical perspectives, the concept of
sharing can lead cognitively to two different cognitive understandings. Children think of:
“Take them all and so that there are none left over; at least take as many as you can”
and/or “average them so that each gets an equal amount”.

When attempting to use the traditional long division algorithm students have to think of
a maximum digit that produces a virtual product (the product of the leading digit of
quotient and the divisor, see the example of 216 + 8 below) that is just less than the virtual
magnitude represented by the corresponding digits of the dividend. Inevitably, many
students find it difficult to relate the procedures to the meaning of sharing and averaging.

The division process involves how students handling the triangular relationship of three
quantities: dividend, divisor and quotient. Let us go through possible mental processes
involved in working on the following division

2 Guess the maximum possible 2-digit multiple of 8 that will give a result that is
8 12 61 6 less than or equal to the leading 2-digit number “21”. Then subtract 16 from
—35 21 to get 5. Although 5 is less than 8, students have to bear in mind that this
“5” is the tens-digit. 16 is the virtual product. Actually, 8] 20=160 is
involved in the first step.

8W26 Carry down the last digit “6” to form the number 56. Now the digit “5”
16 together with digit”6” has formed an actual remainder 56. That is larger than 8.

—5¢6 | The sufficient condition for further division (as an operation) is met.
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Perform the final step by retrieving memory from the times table, that the

product of 7 and 8 is 56.

—3¢ It is obvious that the whole procedural division is unique, as “16” is the
56 maximum possible multiple of 8 that less than “21” and 56 is uniquely the

0 |productof 8 and 7.

In most textbooks, the traditional long division approach is used. Students have to go
through several difficult mental processes including:

1. Estimation of a suitable product(a virtual) via mental multiplication;

2. Retrieval of products from the times table to get a product (divisor) virtual

quotient = virtual product, such that it satisfies the constraints that:

a. the virtual product must be the maximum possible number (digits for the
moment) by comparing its magnitude with the value represented by leading
digits of the dividend;

b. (b) if the trial product is the maximal one, one need to compare the remainder
after subtraction of the leading digits of the dividend and the virtual product.
Again, it is not a formal subtraction as we are doing subtraction of
corresponding digits but not the actual numbers themselves.

3. Repeat the process again onto the remainder (digits only) if it is greater than the

divisor

It is clear that step 2 is crucial and children must go through the difficult mental activity
of optimisation. Finding such a maximum possible virtual product is almost always an
obstacle to children. To them, the worst disadvantage is that the process is simply a set of
rules for them to remember. They may have no understanding that the multiplication of
divisor and the leading digits of the quotient give only a virtual product. The subtraction
inside the long division working is not a complete subtraction because we neglect the role of
the rest of the digits. This partial subtraction confuses students about the values of the
digits and appears to be unrelated to the legitimate concept of grouping and sharing.

Many children rigidly remember to pull down the rest of digits from the dividend and
perform the division continuously. Students do not know the actual meaning of why they
are subtracting the leading digits only. In the example above the first remainder looks like a
unit digit in the first stage but suddenly shifts to a tens-digit (as it should be) in the second
stage of division (after carrying down the other digits of the dividend). Carrying down the
final digit of the dividend is not fully justified mathematically because this digit itself is not
a remainder as the division at the first stage did not involve it. Changing the role of the last
digit to become the remainder can hardly convince students that it is a formal and fair
sharing. That can lead to confusion about the concept about division. As a result, it may
lead to difficulties in doing division of quantities of higher dimension, such as division of
polynomials.

The above procedure is suggested by almost all textbooks. The rote memorisation of
rules does not help those who have blind spots in the times table when they are attempting
to calculate the maximum possible value of the virtual product at the initial stage of the
division.
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An Alternative Algorithm

We have developed an alternative method based on the previously stated idea of
decomposing the dividend into a sum of smaller numbers such that we can perform the
division on each of such elements of the partition. Borrowing the idea of the well known
distributive law of multiplication over addition, we use a distributive law of division over
addition. For example, 24 +4 = (12 +8+ 4)+ 4=3+2+1. Given that one might have the

blind spot in the times tables of 6] 4 =24, one can decompose the 24 into groups of 12, 8
and 4 and divide each of 12, 8 and 4 by 4 to obtain 3, 2 and 1, respectively. The sum of the
partial sums arising from the partitioning of 24 into 12, 8 and 4, and then dividing each of
these by 4, is 6.

Instead of just a set of rules, we introduce this new method and call it the method of
Partition of Quotient (POQ). Conceptually, we adopt the idea of grouping by divisor
(Squire & Bryant 2002). It is basically a process of sharing. For example, sharing 12 objects
among 4 people, each of the 4 people can get 2 objects first in the first round of sharing
(grouping), and the remaining objects are shared again, so that each of them get one more.
There is no need to estimate the maximum but only a number (partition of quotient) that
produces a product for the intermediate step.

Even though the dividend has to be decomposed first in POQ, we must emphasise that
this decomposition of dividend is not unique. In the procedure of division, the student is
free to choose the partition that he or she can perform correctly when he or she knows any
multiple of 4 that is less than 12. In the long division format, using the previous example of
216 +8, we can write the procedures as follow:

5
) 204245227 Inste‘:ad 9f applyir}g a division rule on
manipulating the digits, one may work on the
20 division as an operation of finding a combination
8)216 of multiplication such as 8] 2 =16, 8] 20 =160
160 and8] 5=40. The quotient will be 20+2+5=
56 27. Basically, students may perform the division
16 correctly even if they have a blind spot of
— 8] 7=56. Note that 160, 16 and 40 are direct
40 products. They are real, not virtual.
40
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Alternately, one can write

1 Note that here {10, 10, 6, 1} is the partition
6 and the leading two digits “13” in the
10 10+10+6+1=2" | | remainder 136 is larger than the 8. This has
10 already violated the rule of maximum match in
the traditional method. The digit “6” is not a
8)216 result of carrying down from the dividend 216.
80 It is a direct result of subtraction. That is to
136 say, there is no straight rule at all. The blind
spot 8] 7 =56 does not hinder the procedure
- to complete the division. It is intuitive to
36 choose 10-10 in the first two steps because
438 8) 10 = 80 is relatively trivial. And the
7 partition {10, 10, 6, 1} is of course not unique
7 in terms of the number of elements as well as
- its order.

In teaching this method, a teacher should explain to the students that in sharing 216
objects among 8 people, each of them takes 20 objects first. That means that 160(160 is
real product, not virtual) objects have been allocated. The rest of 56 objects have to be
shared by the same 8 people again and if each takes 2, another 16 will be gone. Then there
will be 40 left. And eventually, each person share 5 objects to complete the whole division
process. Hence, each person has got, sequentially, 20, 2 and 5 objects. Therefore, the total
number each person receives and shares will be the sum, that is 20+5+2 =27 . Adding
these three numbers here is no longer a straight rule to remember but a strong sense of the
consequence of continuous sharing. This sense leads students to add the numbers to get the
answer. {20, 2, 5} becomes a partition of the quotient 27 when dividing 216 by 8. In this
process, we make use of the algorithm of POQ. When D is divided by d,

D+d= (q] +q,+q, +---+qn)= O, where R, =0 fori=123,.,n-1and R, =0, and

D=qd+R,R =qd+R,, -, R _,=q, d+R _,, R ,=qd+0
Substituting backward from the last equation by iteration will easily lead to the equation
D=(q,+q,+q,+-+q,)) d=0) d, where the R’s are the remainders obtained in each

n-1’

step of POQ method in the lone division process. Here {ql,qz,q3,....,qn}is a partition of

the quotient Q. Obviously it is not unique and it all depends on how familiar students are
with the times table and how they choose the partitioned elements in the subsequent steps.
For example, the division24 +4, the partition can be either {4, 2}, {4, 1, 1} or {3, 2, 1}.
Note that the student would not consider or intend to do the decomposition of the dividend
24 into 16 or 8. Instead, he or she may recall the multiplication of 4] 4 =16, then divide the
remainder 8 by 4 to give 2. Then adding up 4 and 2 gives the answer 6. We can see that a
student can do the division even if he or she knows only the three products,
namely12=4]3, 8=4]2, 4=4]1 but not the products 4] 4=16 and 4] 6 =24. When
applying the POQ method, we are not imposing a rule on students on the way to get the
partition as it is not unique.
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Methodology and Results

We have seven classes of Grade 3 students that have a total of 155 students. Their
average age is around 8 years. We separated the classes into control (70) and experiment
(85) groups. The same teacher taught the control group the traditional method and the
experimental group the POQ method. We administered a pre-test comprising simple
division problem to both groups. After a series of lessons involving around two hours of
class instruction, a post-test was given to all students to test their performance on
applying the learnt skills and skills they could transfer to a harder problems. Some students
learning the POQ method could do the division on numbers of larger magnitudes, both the
divisor and dividend. For example some could correctly work out 338 +26 =13 without
prior knowledge of dividing a three-digit number by a two-digit one. The pre-test and post-
test scores for the groups are shown in Table 2. In this data analysis, we did not take into
account of the nesting of students within classes. That will be the next step of our
investigation on the effectiveness of using POQ.

Table 2 Control and Experimental Group Performances on the
Long Division Pre- and Post-Tests

Experimental Group (85) ’ Control Group (70)

Test items M SD M SD
Pre test(24) 12.84 6.16 11.89 6.72
Post-test(33) 23.23 8.63 19.4 941

a : Total score of test in parenthesis b: Number of Students.

Some Work Examples

In this section we include examples of students’ use of the POQ method. In the first
problem, student A did the division in a similarly traditional way but, to skip the rules, she
took the easy combination 100-20-3. Note that the intermediate remainders 115 and 15 are
the results of direction subtractions. In question 10, the hardest step would be 26] 7 to get
182. Again, the partition {7, 5, 1} is not unique.
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In the second example, student B is clever enough to choose the elements of the
partition in the multiples of 10 in question 9. After a series of operations, he easily spotted
that 65 is just the multiple of 5 and 13. Therefore, the partition {10, 10, 50, 10, 30, 13} is
easily obtained, and hence the quotient 123. In question 10, he basically applied the same
trick to reduce the dividend from 338 to 260. Even though he could not promptly
get26) 3 =78, it was almost equally good that he could have spotted that 26]1=26
and26) 2 =52 . And every student would probably make no mistake to add 10, 1 and 2. In
question 11, the trial partition 1 and 2 could easily produce 142 and 284 respectively. A
series of repeated subtractions led to {1, 2, 1, 2}, hence the answer 6.
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Discussion

There are advantages in using the POQ method over the traditional method. Students
need less mental effort because they do not need to guess the maximum (greatest number
less than or equal to the dividend) during arithmetic. The cognitive load is high in such an
optimization procedure, where finding the maximum is a necessity in the initial step of the
traditional method of long division. POQ may avoid such an optimization task because it is
analogous to the known sharing procedures. Based on the Law of Distribution, students
may break down the division into many smaller steps for easier calculation because the
magnitude of the numbers involved in multiplication and subtraction can be reduced.
Furthermore, a repetition of elements of the partition is encouraged to reduce the cognitive
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load (e.g. ¢,=¢,=¢9,=2; or q,=¢q,=¢,=10 or ¢,=q,=¢q,=2]10=20) since the
decomposition of the quotient is arbitrary and it can be attained bit by bit via a series of
easier multiplications and subtractions in the process of division.

POQ is basically an analogue of the well known Euclidean Algorithm(EA) (Dudley
1978) of finding greatest common divisor (gcd) of two integers. In particular, the gcd of D
and d is d itself if D is divisible by d and, in this case, the EA has only one step. In POQ,
we do not impose (as Euclidean Algorithm does) the condition that the remainder (R,) in

d+ R

i+1

each successful step of writing R =g (R,is just D) must be smaller than the

i+l
divisor (d). In fact, the division process will be carried on if R, is greater than d in the i

step. This computational procedure, without imposing the condition that the remainder is
smaller than the divisor in each successful step, is very much similar to the mental process
of grouping and sharing in the real life situation children experienced.

Conclusion

Our preliminary result shows that students perform better in using the POQ then those
using traditional method in long division. The long division algorithm is essentially a pencil-
and-paper type of skill that must be mastered before learning and understanding complex
mathematic skills such as operation on polynomials in algebra. We find that fewer rules are
needed in the procedures of POQ and we do not need to handle the position of the
respective digits in the calculation as in the traditional long division because we directly
compute the partition of the quotient in POQ. Our observation is that POQ is more
appealing to students as it can avoid the difficult estimate-and-match type mental process.
Hence education practitioners are encouraged to teach children this alternative algorithm
along with the traditional long division method.
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