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Three current interpretations of the term ‘mathematical modelling’ as it is used in
mathematics education are described. The modelling cycle appropriate to one of these
interpretations forms the basis for research into blockages that emerge in the solution
process for problems with real world connections. The development of a framework
documenting key elements that enable (or disable) progress during transitions between
phases in the modelling process is described, and a selection of elements illustrated.
Associated implications for learning and teaching are discussed.

The term mathematical modelling as it is used in curricular discussions and

implementations does not have a single meaning. One major interpretation uses

mathematical modelling primarily for the purpose of motivating, developing, and

illustrating the relevance of particular mathematical content. “We recognise that extensive

student engagement in classroom modelling activities is essential in mathematics instruction

only if modelling provides our students with significant opportunities to develop deeper

and stronger understanding of curricular mathematics” (Zbiek & Conner, in press).

Emergent modelling, as a conceptual framework and modus operandi (Gravemeijer, 1999),

is located essentially within this purpose. The perspectives of Lesh and Doerr (2003) and

English (2003) encompass this view but extend beyond to include elements of the second

perspective that follows. This second perspective, which we favour, does not view

applications and modelling primarily as a means for achieving some other mathematical

learning end, although at times this is a valuable additional benefit. Rather this view is

motivated by the desire to develop skills appropriate to obtaining a mathematically

productive outcome for a problem with genuine real-world connections (e.g., Blum, 2002;

Galbraith, Stillman, Brown, & Edwards, in press; Pollak, 1997). Here the solution to a

problem must take seriously the context outside the mathematics classroom, within which

the problem is located, in evaluating its appropriateness and value. It is a view that has

characterised the International Conferences on the Teaching of Mathematical Modelling and

Applications and the curricular call to arms on the part of those such as Pollak (in press). It

was also a central emphasis in the Discussion Document for ICMI Study 14 (Blum, 2002).

(We do not attempt here to encompass various other idiosyncratic interpretations of the

term mathematical modelling as used in some localised curricular implementations.) While

the above approaches differ in the emphases they afford modelling in terms of its

contribution to student learning, they generally agree that modelling involves some total

process that encompasses formulation, solution, interpretation, and evaluation as essential

components.

1
 Jill is a post-graduate researcher on the ARC funded RITEMATHS project at The University of Melbourne.



238

Within these approaches links between the real and mathematical worlds are

maintained, even though they may at times be somewhat strained. It has become clear

however that the term mathematical modelling is increasingly being used in a much more

restricted sense, to mean nothing more than fitting curves to sets of data points, and the

increasing use of technology means that this issue may become increasingly pervasive. The

following example illustrates associated implications for the integrity of models. Data

showing minutes of sunlight for two Australian cities are provided at intervals of 4-weeks

for a calendar year. The purpose of the problem is to obtain mathematical functions that

describe the data and to use them to make various comparisons about aspects of life in the

respective cities. Noting that the data, when plotted, suggest a translated and dilated cosine

function of the form y = a + bcos(
2

T ( x+c )) , the period may be reasonably taken as 365

(days), and the minimum and maximum values estimated from the data by noting that these

occur respectively on June 21, and December 21. A resulting model for one of the cities,

that fits the data well, has the equation y =  730+158cos(
2

365
( x+11)) . Now the TI-83

Plus graphing calculator has a trigonometric curve fitting facility among its regression

options that generates an immediate function of best fit that is technically a closer match

than the above. Expressed in the same form it has the following equation:

y =  731+155cos(
2

377
( x+17)). Interpretation of this ‘closer fit’ then infers a ‘year’ of 377

days, with the longest day around December 15, outcomes that fail the fundamental test of

real-world validity. A ‘model’ generated by this means is a purely technical artefact whose

parameters vary with the particular data set, and which can be generated in complete

ignorance of the principles underlying the real situation. At another level it raises a

profound theoretical issue — the relative authority of empirical data versus theoretical

structure. While curve fitting is an important component skill, using curve fitting as a

synonym for mathematical modelling is an aberration of modelling. In particular, the

subversion of the requirement of testing against reality by making choices based on the

menus of graphing calculators or computers represents a substantial distortion of the

purpose of modelling, and leads to both inappropriate modelling habits and outcomes.

Modelling Process

Various diagrammatic representations of the modelling process, as it applies within the

second perspective, are common in the literature (e.g., Merrill, 2003) and most of these are

relatives or descendants of a diagram initially provided by the Open University (UK). Such

diagrams illustrate key stages in an iterative process that commences with a real world

problem and ends with the report of a successful solution, or a decision to revisit the model

to achieve a better outcome. The purpose is to provide a scaffolding infrastructure to help

modellers through stages of what can appear as a challenging and opaque task. It is based

on procedures that real world problem solvers undertake. However, as pointed out by

Blum and Leiß (in press), when interests in teaching and learning are also central we need a

version more oriented towards the problem solving individual, to give not only a better

understanding of what students do when solving (or failing to solve) modelling problems,

but also a better basis for teachers’ diagnoses and interventions. Figure 1 contains a

structure that encompasses both the task orientation of the original approach, and the need
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to capture what is going on in the minds of individuals as they work, often

idiosyncratically, on modelling problems.

Figure 1. Modelling process chart.

The respective entries A to G represent stages in the modelling process, and the arrows

signify transitions between the stages. The total problem solving process is described by

following these arrows clockwise around the diagram from the top left. It culminates either

in the report of a successful modelling outcome, or a further cycle of modelling if evaluation

indicates that the solution is unsatisfactory in some way.

Now, adding an educational focus, we turn attention to the kinds of mental activity that

individuals engage in as they move around the modelling cycle. As the term ‘activity’

suggests, these can be expressed in terms of verbs that describe what happens as modellers

achieve a successful transition (or not) from one modelling stage to the next, (where there is

special interest in identifying blockages that impede progress). At a theoretical level these

may be thought of as generic activities as illustrated for the transitions below.

A  B: Understanding, structuring, simplifying, interpreting context
B  C: Assuming, formulating, mathematising
C  D: Working mathematically
D  E: Interpreting mathematical output
E  F: Comparing, critiquing, validating
F  G: Communicating, justifying, report writing (if model is deemed satisfactory) OR

F  B: Revisiting the modelling process (if model is deemed unsatisfactory).

Research Focus

Our focus is located at the level of the actions of individuals while learning and

applying modelling skills in a Technology-Rich Teaching and Learning Environment

(TRTLE) (Brown, 2005). A classroom in which mathematical modelling is being enacted is

a varied and unpredictable place, featuring intense activity, problematic times when

blockages occur, and spontaneous and unforeseen actions by students (and teachers)

engaging with new material and challenges. Such a culture is central to the process of

teaching mathematical modelling skills, where successive implementations even by the same

teacher can vary substantially in detail. The nature of the world outside the classroom such

that real problem data are usually messy. Consequently, the appropriate use of technology

is central to our purpose, and its integration with mathematics within the modelling process

is creating essential challenges about which more needs to be known. In particular we focus

on critical points occurring within transitions between stages in the solution process

described in the previous section.

There are two main research goals:

1. 1. To identify and classify critical aspects of modelling activity within transitions

between stages in the modelling process.

2. 2. To identify pedagogical insights, for implementation through such activities as

task design and organisation of learning.

   B. Specify maths problem           C. Formulate                    D. Solve

   G. Report                         F. Evaluate           E. Interpret

A. Real
world
messy
problem
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Data for this paper were generated within RITEMATHS, an Australian Research

Council funded project of the University of Melbourne and the University of Ballarat with

six schools and Texas Instruments as industry partners. The research being undertaken is

part of a design experiment (English, 2003) in its second cycle at the time of this data

collection and involved implementation of two tasks in one school. This school has been

developing a lower secondary mathematics curriculum providing opportunities for

engagement in extended investigation tasks set in real-world contexts. A focus to date has

been in Year 9 when students (14–15 year olds) are required for the first time to have

laptop computers and graphing calculators. Intensive data were generated, in the form of

student scripts (24 and 28 respectively), videotaping of teacher and selected students,

video and audio-taped records of small group collaborative activity, and selected post-task

interviews (8 and 4) respectively. In order to identify and document characteristic levels of

performance; occurrence or removal of blockages; use of numerical, graphical, and algebraic

approaches; quality of argumentation; and the respective interactions between modelling,

mathematical content, and technology, these data were entered into a NUD.IST database

(QSR, 1997) and analysed through intensive scrutiny of the data to develop and refine

categories related to these themes. Illustrations used in this paper are drawn from the

analysis of the implementation of one of the tasks, Cunning Running (Figure 2), that

occupied approximately one week of class time.

Cunning Running: In the annual “KING OF THE COLLEGE” Orienteering event, competitors choose a
course that will allow them to run the shortest possible distance, while visiting a prescribed number of
check point stations. In one stage of the race, the runners enter the top gate of a field, and leave by the
bottom gate. During the race across the field, they must go to one of the stations on the bottom fence.
Runners claim a station by reaching there first. They remove the ribbon on the station to say it has been
used, and other runners need to go elsewhere. There are 18 stations along the fence line at 10 metre
intervals, and the station closest to Corner A (station 1) is 50 metres from Corner A. The distances of the
gates from the fence with the stations are marked on the map.

TASK: For the station on the base line closest to Corner A, calculate the total path length for the runner
going Gate 1 – Station 1 – Gate 2. Use Lists in your calculator to find the total distance across the field as
18 runners in the event go to one of the stations, and draw a graph that shows how the total distance run
changes as you travel to the different stations. Observe the graph, then answer these questions. Where is the
station that has the shortest run total distance? Could a 19th station be entered into the base line to achieve
a smaller total run distance? Where would the position of the 19th station be? If you were the sixth runner
to reach Gate 1, to which station would you probably need to travel? What is the algebraic equation that
represents the graph pattern? Draw the graph of this equation on your plot of the points. If you could put in
a 19th station where would you put it, and why?

Figure 2. Cunning Running Task.

The key steps in the solution of Cunning Running follow. The solution involves the
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calculation of the total path as the sum of two segments, followed by graphing,

construction of an algebraic model, verification, interpretation, and the search for a

nineteenth station optimally located. Total path, for example, is given by L = (14400+x2)

+ (1600+(240-x)2) where x is the distance to a station from corner A. Figure 3 shows a

typical spreadsheet graph produced by students to show the different values of path length

calculated for the separate checkpoint stations obtained, for example, using the LIST

facility on a graphing calculator. The equation can be checked, using the function graphing

and the plotting facilities of a graphing calculator to show the graph for L  in terms of x

passes through the scatter plot of the points. Deciding which checkpoint station to use (if

the sixth runner), and selecting a site for the 19th station, are inferred from the behaviour of

L in terms of x, as displayed in the graphical output.

Figure 3. Spreadsheet chart for length of path.

Some Outcomes

The structural framework (Figure 4) consists initially of the transitions (from Figure 1) of

which four have been included for present purposes. Initially the contents of the respective

sections are empty — the production of the contents is described below. Each second level

entry has two parts. The left-hand statement is a generic descriptor for a particular

category of modelling activity that presents a blockage if absent or unsuccessful. The right-

hand statement in capitals illustrates this using an example from Cunning Running. Below

we elaborate more using samples from observation and student work.

Messy real world situation  real world problem statement

To assist in the early specification and formulation stages (avoiding an early blockage),

the teacher provided a supporting dynamic geometry animation of the task which students

watched (1.1).

Interviewer: The Friday before you did the task you saw a GSP animation of the task.

Gary: [showing the movement with his fingers using the task diagram] Awh, and he moved
the bar. It just, it showed um, um, I understood it. It was just showing you the length
and how you actually got it, the area … . It showed everything that you needed really.
… it was just good to see it in front of you and it doing its own little business
[indicating the movement of the station along the base line with his fingers again].

Identification of strategic entities to form a basis of model building is the first analytic task

Total distance of running    
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(1.3), followed by specification of the correct element of this strategic entity. Here the

strategic entity is length, and the key element a compound distance to be constructed from

other components of the situation. Prior to this identification, simplification

(representation of paths by straight lines) provides a basic structure for the problem

context (1.2).

1. MESSY REAL WORLD SITUATION  REAL WORLD PROBLEM STATEMENT

1.1 Clarifying context of problem [ACTING OUT, SIMULATING, DISCUSSING PROBLEM SITUATION]
1.2 Making simplifying assumptions [RUNNERS WILL MOVE IN STRAIGHT LINES]
1.3 Identifying strategic entit(ies) [RECOGNISING LENGTH OF LINE SEGMENT AS THE KEY ENTITY]
1.4 Specifying correct elements of strategic entit(ies) [IDENTIFYING SUM OF TWO CORRECT LINE SEGMENTS]
2. REAL WORLD PROBLEM STATEMENT  MATHEMATICAL MODEL

2.1 Identifying dependent and independent variables [TOTAL RUN LENGTH AND DISTANCE FROM CORNER]
2.2 Representing formulae in terms of ‘knowns’ [LENGTH EXPRESSED IN TERMS OF FIELD EDGE DISTANCES]
2.3 Realising independent variable must be uniquely defined [X-CANNOT BE DISTANCE FROM BOTH A AND B]
2.4 Choosing technology to enable calculation [RECOGNISING HAND METHODS ALONE ARE IMPRACTICAL]
2.5 Choosing technology to automate formulae for multiple cases [LISTS HANDLE MULTIPLE X-VALUES]
2.6 Choosing technology to produce graphical output [SPREADSHEET OR GRAPHING CALCULATOR ]
3. MATHEMATICAL MODEL  MATHEMATICAL SOLUTION

3.1 Generating appropriate formulae [L = (14400+X
2
) + (1600+(240-X)

2
), WITH X-VALUES SELECTED]

3.2 Using technology/mathematical tables to perform calculation [SUCCESSFUL CALCULATION OF L-VALUE]
3.3 Using technology to automate application of formulae to multiple cases [EFFECTIVE USE OF LIST

FACILITY]
3.4 Using technology to produce graphical representations [SPREADSHEET CHART OR GC STATPLOT]
4. MATHEMATICAL SOLUTION  REAL WORLD MEANING OF SOLUTION

4.1 Identifying math results with real world counterparts [L-VALUES IN TERMS OF CHECKPOINT STATIONS]
4.2 Integrating arguments [OPTIMUM PLACEMENT OF STATION IN TERMS OF GRAPHICAL INTERPRETATION]
4.3 Relaxing prior constraints to address new situation [APPLYING NEW CRITERIA FOR 19TH STATION]
4.4 Invoking mathematics to support decision [NO OPTIMAL GUESS WITHOUT MATHEMATICAL SUPPORT]

Figure 4. Emergent framework for identifying student blockages in transitions.

Real world problem statement  mathematical model

Key requirements with the potential to generate blockages include the following:

Selection of dependent and independent variables for distance formula (2.1); setting up a

formula that uses known quantities (lengths along side of field) (2.2); realising that an

independent variable must be uniquely defined (2.3) [e.g., Mei used a one variable

expression for the total distance 402 + x( ) + 1202 + x( ) , and (the obvious error apart) did

not see conflict when using ‘x’ as the distance from the station to corner A in one part of

the expression, and corner B in the other part]; choosing technologies to enable calculations

such as square roots (e.g., with Excel versus a calculator) (2.4); choosing to use technology

to automate extension of the application of formulae to multiple cases (using graphing

calculator LISTs or spreadsheet) (2.5); choosing to use technology (spreadsheet or graphing

calculator) to produce a graphical representation of the model (2.6).

Mathematical model  mathematical solution

In this transition students need the facility to carry through the strategic decisions

made previously. Knowledge of mathematical procedures (3.1), technological knowledge

for their automation, and declarative knowledge about the rules of notational syntax

associated with both mathematics and technology feature in the sources of blockages in this

transition (3.2, 3.3, 3.4). Some blockages here follow from difficulties in the earlier
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formulation process (e.g., non-uniqueness of a definition of a variable). Others follow

appropriate decisions made in formulation (e.g., choosing to use technology for some

correct purpose), but occur due to technical failures in using technology to automate

extensions of formulae to multiple cases or to produce graphical representations. One

student performed all 18 station related calculations by hand, at the cost of both time and

experience in using technology to automate calculations already mastered by hand. She thus

denied herself “reflective time” needed to examine the appropriateness and reasonableness

of the models constructed in relation to real world aspects of the situation being modelled.

Mathematical solution  real world meaning of solution

Blockages occur as students fail to identify mathematical results with real world

counterparts (4.1). This most basic of interpretative acts, involves here the interpretation

of an outcome distance in terms of implications of using the corresponding checkpoint

station, or the meaning of the minimum distance in terms of a particular strategy for station

selection. The quality of interpretations ranged from bald assertions, to reasoned argument

based on mathematical outcomes (4.2, 4.4). For example, when asked, “Does running via

station 1, or station 2, or station 3 make any difference to the overall length of the run?”

responses ranged from unsupported assertions such as, “It makes a difference”, to justified

arguments based on associated numerical results such as, “Yes, it does the closer you are to

corner A, the further the distance you have to run.” The ability to deal appropriately with

constraints is another key skill and its absence a source of blockage (4.3). Students had the

greatest difficulty determining where to place a 19th station, as this entailed relaxing the

previous constraint of continuing the ordered pattern (19th must follow 18th at a distance

of 10 metres). Many students simply placed the extra station 10 m away from either the

first or last stations, rather than applying the minimum distance criterion.

Reflections

In conclusion we locate the current work within the wider field of applications and

mathematical modelling in education. Firstly, a direct application derives from the way the

research has been conducted. This is to identify specifically, activities with which

modellers need to have competence in order to successfully apply mathematics at their

level. The Framework is an attempt to begin to systematically document these. As the

elements in the framework were identified by observing students working (and in particular

wrestling with blockages to progress), there are two immediate potential applications. First

are the insights obtained into student learning, and how these can inform our understanding

of the ways that students act when faced with modelling problems. Second, closely allied

to this are associated pedagogical insights. By identifying difficulties with generic

properties, the possibility arises to anticipate where, in given problems, blockages of

different types might be expected. This understanding can then contribute to the planning

of teaching and task design, in particular the identification of prerequisite knowledge and

skills, preparation for intervention at key points if required, and scaffolding of significant

learning episodes. With respect to the different ‘models’ of modelling introduced earlier, the

approach here provides some safeguards against the worst excesses of curve fitting elevated

to a status beyond its importance. Designing problems where data are generated from a real

context, before being subjected to analyses, reduces the potential for mindless manipulation

driven by available calculator or computer menus.
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There are design and implementation implications if modelling is used primarily to

serve other curricular needs, rather than viewed as an ability to be built and nurtured in its

own right. In the latter view, necessary knowledge and skills must first be available, as the

emphasis is on using existing knowledge to solve problems with real world connections.

Clearly cognitive demand is increased when attention must be divided between activating a

modelling cycle and puzzling about technical aspects of technology (or indeed by-hand

mathematics). This is not to say that students will not reach beyond their present level to

involve mathematics new to them, or use technology in previously unexplored ways. The

point is that the basic elements required to initiate and support such activity should be

within their experience. In the present example this would include familiarity with

spreadsheets, and facility with the use of LISTs and function graphing options on graphing

calculators. In this approach to modelling student facility in transitions is a key, and

independence here should be encouraged, scaffolded if necessary, (but not specifically led

except as a last resort), to make and carry through essential decisions along a solution path.

If however, modelling is used primarily to motivate, and/or provide a vehicle for the

development of particular mathematical or technological expertise the situation is

somewhat different. For example the calculation of distances for multiple stations could

provide a context for the introduction and operation of the LIST facility. At the point

where multiple calculations become necessary the modelling process would be interrupted,

and teaching emphasis moved to mastery of a new skill. The provision of a meaningful

context is the main purpose for the modelling in this view. Of course elements of both

approaches can be incorporated in a given application. In Cunning Running an adequate

solution at year 9 level can be obtained in terms of the spreadsheet graph in Figure 3 or by

using the numerical representation (on the graphing calculator, spreadsheet or by hand).

Introduction of the challenge to ‘verify’ the equation to the graph in this particular version

of the task provides an opening for the introduction of the function graphing facility of a

graphing calculator, which can then be pursued as a technique in itself.
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