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This presentation reflects on over three decades of research focused on the development of 
mathematical structure. ‘Looking back’, it traces the key theoretical influences that informed a 
series of studies on children’s imagery, patterns and relationships including multiplicative 
reasoning and spatial structuring.  ‘Looking beneath’, the development of Awareness of 
Mathematical Pattern and Structure is highlighted through development of an interview-based 
assessment and pedagogical program. ‘Looking beyond’, it raises key questions about the 
importance of developing deep mathematical thinking leading to generalisation, and realising 
this possibility for young children.  

This annual Clements/Foyster lecture provides a unique opportunity to be both “reflective 
and forward thinking” about our research and its impact. Under the theme, 40 years on: We 
are still learning, we can celebrate our research strengths, our collegiality, and 
Australasia’s place in mathematics education research internationally. While this 
presentation provides a reflection on my contribution to mathematics education research 
for more than three decades, it traces the significant impact of those colleagues whose 
ideas shaped my ever-developing theoretical perspectives and the many research questions 
that I sought to answer.  

‘Looking back’: Mathematical thinking  

While my interest in how children developed mathematical ideas stemmed from my initial 
study of educational psychology and years of primary teaching it was not until I studied 
under the guidance of Professor Brian Low from 1984-1990 that my search for the origins 
of mathematical thinking in children took hold. As one of the foundational members Brian 
emanated MERGA’s collegial spirit of MERGA and was pivotal in forming a strong group 
of mathematics education researchers at Macquarie University in the early 1980s. This was 
a time when scholars such as Richard Skemp, John Mason and Alan Bishop influenced the 
research direction of many Australian mathematics education researchers.  My attempts to 
narrow down a purposeful research investigation always led to a more fundamental 
question— What is mathematical thinking and how does it develop?  

The ICME-5 conference in Adelaide 1984, was a critical opportunity to discuss firsthand 
the cutting edge research and various theoretical perspectives of eminent scholars such as 
Alan Bell, Kath Hart, John Mason, Tom Romberg, Tom Carpenter, Jeremy Kilpatrick, 
Gerard Vergnaud, Efraim Fischbein and Les Steffe to name just a few.  The Working 
Group on Primary Mathematics provided different perspectives on how to investigate such 
a broad and complex question. But a key message was the need to research how children’s 
informal mathematics can develop prior to formal instruction—studies that describe and 
explain informal mathematical thinking and the strategies that children develop to solve 
mathematical problems.  

An investigation of children’s development of multiplication and division concepts seemed 



 
a focused and logical extension of the work by Steffe and other studies for example, on 
additive word problems and counting strategies. My longitudinal study of children aged 6 
or 7 years that ensued would hopefully yield some new evidence of the informal 
mathematical strategies and children’s representations of multiplicative situations. 

At a deeper level, I was also searching for some clues about how recognising patterns and 
relationships, and the processes of modeling, representing, visualising, symbolising, 
abstracting and generalising were central to mathematical thinking. From the outset I 
considered that any investigation of domain specific concepts, skills or strategies would 
need to look more deeply at these processes. While a Piagetian view of developmental 
stages still prevailed I questioned whether the processes of abstraction and generalisation 
could be developed in young children, even prior to formal instruction.  

I will show later in his paper how I have returned many times to these origins and how my 
present research investigations still emulate the convergence of these ideas.  

My initial work on multiplication and division problems provided an opportunity to look 
more deeply into underlying mathematical processes. The research focused on children’s 
multiplicative structures and their representations which could be traced to a number of 
theoretical perspectives: the Structure of Observed Learning Outcomes model (SOLO) 
(Biggs & Collis, 1982), intuitive models’ theory (Fischbein, 1977), conceptual fields 
(Mulligan & Vergnaud, 2006), and multiplicative reasoning (Steffe, 1994). 

Taking on multiple perspectives encouraged the integration of different but seemingly 
complementary ideas about mathematical structure. Ideally the longitudinal study of 
children’s multiplication and division concepts was one conceptual domain that could 
allow further exploration into the application of mathematical structure. On one hand, the 
analysis of semantic structure of word problems enabled an investigation of mathematical 
structure in terms of ‘theorems in action’.  From another perspective, the initial analysis of 
children’s solutions to word problems applied the SOLO taxonomy, represented as 
response maps to multiplicative word problems. Adapting the SOLO model allowed 
‘structure’ to be described and so this informed the direction of subsequent analyses. 
Fishbein’s notion of ‘implicit primitive models’ directed my attention to exploring the 
underlying influences of these on children’s solution strategies.  Children's intuitive models 
for multiplication and division were analysed through their solutions to a variety of 
semantic structures of word problems (Mulligan & Mitchelmore, 1997). It was found that 
instructional approaches were not necessarily the basis for children’s implicit models—
multiplicative concepts were found already well developed prior to formal instruction. 
Robust formation of these concepts were essentially based on an equal-groups structure 
and strategies that reflected this structure such as multiple and double counting, grouping, 
partitioning, and patterning processes. These were represented by children’s inscriptions 
and articulated through verbal and written explanations. However, children often chose to 
impose their own, often inappropriate structures, such as additive rather than equal groups,	
based on their imagistic representations of the problem situation.  
While the findings of this study advanced our understanding of children’s developing 
strategies for solving multiplicative problems it raised a much more fundamental question 
of how children’s imagistic representations influenced the structural development of 
mathematical concepts.  



 
In collaboration with Jane Watson (Mulligan & Watson, 1998), we embarked on a 
secondary analysis of students’ representations (drawn recordings, notations and verbal 
explanations). Using a “more powerful lens” to look more closely at these data we aimed 
to identify and describe structural characteristics using the Structure of Observed Learning 
Outcomes model (SOLO) (Biggs & Collis, 1982). Modes of functioning such as ikonic or 
concrete-symbolic modeling were aligned with increasing levels of structural development 
(pre-structural, uni-structural, multi-structural, relational). Children’s internal 
representations at pre-structural and uni-structural levels in the ikonic mode reflected the 
equal-grouping structure of multiplication. From longitudinal tracking of individual 
children’s images, it was found that pre-structural images became more organised 
mathematically in the ikonic mode, i.e. random inscriptions were developed into 
groupings. Children’s pre-structural responses became less reliant on physical models, and 
idiosyncratic images were replaced by numerical and symbolic features. 

However, we found that analysing students’ responses according to SOLO did not provide 
sufficiently fine-grained categories to find relationships between mathematical structures 
across mathematical concepts. Working with young children proved to be more 
challenging because there had been no systematic in depth studies applying the SOLO 
model to early concept development. 
 

‘Looking within’: Children’s internal images of mathematics 
My attention was then turned to children’s representations and how they used imagery in 
various ways to construct and interpret mathematical ideas. Internal, imagistic 
representation is essential to virtually all mathematical insight and understanding 
…interactions with external, imagistic representations are important to facilitating the 
construction of powerful internal imagistic systems in students (Goldin, 1996).  
I questioned how these systems were fundamental to developing abstraction and 
generalisation in mathematics. Features of imagistic systems included visual, verbal and 
non-notational inscriptions, and kinaesthetic and tactile strategies for encoding 
mathematical meanings. Children’s images could be classified were viewed as either static 
or dynamic in nature. I began to take this perspective seriously as a different way of 
accessing children’s underlying development and representation of concepts. 
Several new studies on counting and estimation, subitising, the number line, the number 
system, fractions and decimals were formulated. 
Two new research questions were raised:  

If children’s internal imagistic representations are closely linked to the structural 
development of mathematical concepts, how should these be integrated with 
assessment and instruction? 
What if there is a mismatch between the child’s individual and informal 
mathematical structures and those imposed by instruction and curricula? 
 

The study of mathematical structure was central to the work of Noel Thomas who 
explored the relationship between children’s counting, grouping and place-value 
knowledge and their conceptual development of the base ten numeration system. By 
analysing children’s recordings for features of structural development, it was found that 



 
children’s internal representations of numbers were highly imagistic and that their 
imagistic configurations embody structural features of the number system to widely 
varying extents and often in unconventional ways. Close analysis of these structural 
features provided new evidence that counting and place value knowledge were influenced 
to a large extent by the way children imagined the counting sequence. We were able to 
describe several mathematical structural features in their representations: counting and 
symbols, number patterns and sequences, groupings by tens, use of ten as an iterable unit, 
recursive grouping, and multiplicative structure supporting place value knowledge. We 
found a wider use of structure than we had anticipated. What was more powerful was the 
evidence that children’s representational systems were subject to change and they could 
eventually become powerful autonomous systems (Thomas, Mulligan & Goldin, 2002). 
However, the structural development of the number system did not closely resemble the 
curriculum sequences that were typical of instructional programs. 

Second grader’s representations and conceptual development of number: a longitudinal 
study 

In a new investigation, a 3-year longitudinal study investigated 120 second graders’ 
representations of number involving counting, grouping, base ten structure, multiplicative 
and proportional reasoning (Mulligan, Mitchelmore, Outhred & Russell, 1997). Although 
many studies were focussed on early numeracy programs at that time, this study 
investigated the role of imagery in children’s representations of a range of numerical 
situations. The study was considered by some colleagues at the time, as a departure from 
mainstream studies. Goldin’s model was adapted to analyse representations across an 
alternative range of tasks such as visualising the counting sequence, and imaging and 
drawing “what do you see between 0 and 1”. Analysis of children's visualisations, 
drawings, ikons, symbols and explanations of their representations identified how they 
imposed structure, or lack thereof, on numerical situations. Low achievers were more 
likely to produce poorly organised, pictorial and ikonic representations that were lacking in 
structure. These children lacked flexibility in their thinking; they were only able to copy 
recordings produced by others. Essentially these children lacked a grasp of the number 
system, of an underlying equal-groups structure, and believed that unitary counting could 
be used to solve any mathematical problem. Difficulties faced with simple ratio tasks was 
also linked to children’s inability to visualise unit fractions. High achievers, however, used 
abstract notational representations with well-developed structures from the outset.  

A follow-up study of 24 of these children tracked to Grade 5 indicated that low achievers 
consistently lacked mathematical structure; pictorial and ikonic representations dominated 
responses with little evidence of meaningful notational systems being developed 
(Mulligan, 2002). 

These studies were consistent with the literature on the differential effects of imagery use 
in the development of elementary arithmetic and the finding that students who recognise 
the structure of mathematical processes and representations tend to acquire deep 
conceptual understanding (Gray, Pitta &Tall, 2000). We formed the hypothesis that: 

the more a student’s internal representational system has developed structurally, the 
more coherent, well organized, and stable in its structural aspects will be their 
external representations and the more mathematically competent the student will be. 

The studies that followed this focused on the relationships between structural features and 
the formation of mathematical concepts.   



 
There were other studies that influenced the direction of the larger suite of studies that 
followed.  Students’ representations were essentially spatial in nature and these features 
could not be separated from the process of structuring. The study of two- and three-
dimensional structures (Battista, Clements, Arnoff, Battista & Borrow, 1998), and 
measurement concepts (Outhred & Mitchelmore, 2000) focused on ‘spatial because it 
involved the process of constructing an organisational form to the mathematical ideas. The 
depictions of groups, arrays, grids, equal-sized units and graphs all relied on some aspects 
of spatial structuring.  
 

‘Looking beneath’: Awareness of Mathematical Pattern and Structure  
 
Building on the studies on imagery and multiplicative structures, a suite of related studies 
with 4 to 8 year olds were designed with the aim to describe as explicitly as possible the 
structural characteristics in children’s mathematical development. It was postulated that there 
was an underlying common feature that was critical to developing mathematical patterns and 
relationships and ultimately form simple generalisations. Awareness of Mathematical 
Pattern and Structure (AMPS) was thought to comprise two interdependent components: 
one cognitive — knowledge of structure, and one meta-cognitive — a tendency to seek and 
analyse patterns (Mulligan & Mitchelmore, 2009).  
Another aim was to develop a reliable assessment that could give qualitative and possibly 
quantitative indicators of structural development. This assessment would inform the 
development of a classroom pedagogical program that could potentially promote structural 
thinking with a broader goal of developing generalisation in early mathematics learning. 
 
Early signs of the development of AMPS were gleaned from the investigation of children’s 
early formation, for example, of subitising and other patterns, representations of shapes, 
and arrays and girds. Figures 2 and 3 depict a 7-year old child’s drawn image of the 
numbers 10, 11 and 12. There is some indication that the child draws on some emerging 
features of spatial structuring such as the outline of a square, rows and columns but the 
structure of the numbers is somewhat random and does reflect equal grouping. In contrast. 
Figure 4 depicts a sequence of highly structured representations based on a 3 x 3 array, 
extended to 4 x 3 for 12. Spatial structuring is utilised in the construction of the array. 

 
 
Figure 1. Kindergarten child’s  Figure 2. Kindergarten child’s image of 11 

image of 10 and 12. 
 



 

 
 
Figure 3. Kindergarten child’s image of 10, 11 and 12 (Structural)  

The focus on AMPS provided crucial information in the assessment of the child’s 
mathematical concepts.  While these examples (Figures 1 - 3) show that both children have 
learned to count, represent and symbolize number correctly the underlying lack of structure 
for the child (Figures 1 and 2) may not be visible using traditional forms of numeracy 
assessment.  

Another key question was raised: Why do some children naturally develop and 
represent pattern and structure in their mathematical representations and others do 
not? 

Preschoolers’ representations of patterning: An intervention study 
Papic framed a new study focused on the early representational development of patterning 
with preschoolers (Papic, Mulligan & Mitchelmore, 2011). The development of patterning 
strategies during the year prior to formal schooling was studied in 53 children from two 
similar preschools. One preschool implemented a 6-month intervention focusing on 
repeating and spatial patterns. An interview-based Early Mathematical Patterning 
Assessment (EMPA) was developed and administered pre- and post-intervention, and 
again following the first year of formal schooling. Assessment tasks comprised 
identification, representation, extension, transformation and justification of simple 
repetitions, and growing patterns. The intervention group outperformed the comparison 
group across a wide range of patterning tasks at the post and follow-up assessments. 
Intervention children demonstrated greater understanding of unit of repeat and spatial 
relationships, and most were also able to extend patterns. The notion of unit of repeat 
informed the subsequent studies on pattern and structure. 
 

 
Studies on Pattern and Structure 

An interview-based assessment, the Pattern and Structure Assessment (PASA) was 
developed and trialed with 109 Grade 1 students with follow up case studies in Grade 2 
(Mulligan & Mitchelmore, 2009).  

Three research questions were formulated: 
1. Can the structure of young students’ responses to a wide variety of mathematical tasks 

be reliably classified into categories that are consistent across the range of tasks? 
2. Do individuals demonstrate consistency in the structural categories shown in their 

responses? 
3. If so, is the individual student’s general level of structural development related to their 

mathematical achievement?  



 
Thirty-nine tasks covered many mathematical concepts and processes such as multiple 
counting, unitizing, subitising, partitioning, simple repetition, spatial structuring, 
multiplication and division, and proportional reasoning and transformation.  All the tasks 
required the child to identify, draw and explain their visualisations, representations and 
aspects of pattern and structure. Responses to these tasks were coded dichotomously (correct 
or incorrect) but moreover each response was categorised for features of pattern and 
structure. These responses were later reliably assigned to one of five levels of structure as 
follows:  

• Pre-structural. Students pick on particular features that appeal to them but are 
often irrelevant to the underlying mathematical concept. 

• Emergent. Students recognise some relevant features, but are unable to organise 
them appropriately. 

• Partial structural. Students recognise most relevant features of the structure, but 
their representations are inaccurate or incomplete.  

• Structural. Students correctly represent the given structure. 
 

• Advanced Structural. Students provide accurate, efficient and generalised use of 
underlying structure. 

The findings showed that there was a high level of consistency in individuals’ structural 
level across tasks. An extremely high correlation between students’ structural level and the 
total number of correct PASA responses was also evident, considered a measure of their 
mathematical achievement level. Classroom teachers also identified the pre-structural 
students as low achievers and the structural students as high achievers.  

A follow-up study investigated structural development among the eight lowest-achieving 
students and the eight highest-achieving students over the subsequent 18 months 
Consistent with earlier results, substantial differences were found between the two groups 
of students. The high achievers made significant progress over the 18 months and many of 
their responses fell into the advanced structural level. Low achievers made little progress 
and their representations became more disorganized and incoherent over time.  They had 
not developed an initial awareness of patterns and structure so their ongoing mathematical 
learning became meaningless and more ‘crowded’ over time. 

Further development and trailing of the PASA continued as well as the development of a 
pedagogical program to promote pattern and structure across mathematical concepts. This 
was supported by a year long whole school intervention which resulted in significant 
advances for students on PASA and numeracy assessments particularly in the first three 
years of schooling.  The program was further developed through a study of Kindergarten 
students over a 15-week period. Students’ showed rapid and sustained development of 
simple and complex repetitions, growing patterns, spatial structuring, base ten and 
multiplicative reasoning was central to the program; measurement and geometry tasks 
were developed as a vehicle to develop number concepts.   
The elements of the program were further refined and extended, and subject to an intensive 
longitudinal evaluation study from Kindergarten to Grade 1 (see Mulligan, English, 
Mitchelmore & Crevensten, 2013). The work of English had a significant influence on the 
development of the study and a review of the PASA (English, 2004). This evaluation study 



 
of 316 Kindergartners employed a new form of the PASA and a standardised measure of 
mathematical achievement (I Can Do Maths). A PASMAP intervention program was 
trialled with an experimental group over the entire first year of schooling. Analysis 
indicated highly significant differences on the PASA between intervention students and the 
‘regular’ group at the retention point (p < 0.002) and higher levels of structural 
development for the intervention students. The study validated the instrument (PASA) and 
constructed a Rasch scale indicating item fit.  

Following the longitudinal evaluation study, a new validation study developed the PASA 
instrument was re-constructed, administered to a reference sample of 618, 5 to 6-year olds, 
and subjected to a Rasch analysis (Mulligan, Mitchelmore, & Stephanou, 2015). Three 
forms of PASA provided a reliable and valid measure of AMPS and it was found highly 
correlated with a test of mathematical achievement (PATMaths). The important outcome 
of this aspect of the research was that a measure of AMPS could be provided as well as 
reliable indicators of structural features that were effective for teacher interpretation.  
The analysis also enabled the PASA to be categorised into five structural groupings: 
sequences, shape and alignment, equal spacing, structured counting and partitioning, 
The Pattern and Structure Mathematics Awareness Program (PASMAP) 

The PASMAP provides teachers with exemplars and explanations of core structural 
features gleaned from the research (Mulligan & Mitchelmore, 2016). An emphasis is 
placed on developing mathematical structures such as equal grouping, equivalence and 
commutativity, the relationship between metric units, transformations and pattern, and 
structuring data. The pedagogical approach takes what might seem to be a collection of 
inquiry-based tasks to a different level. What’s critical is moving beyond the modelling 
and representing processes to visualising and generalising. The pedagogical approach 
focused on promoting and connecting concepts and relationships, and ultimately 
generating simple mathematical generalisation directs learning sequences to particular 
AMPS levels in particular structures, giving the teacher explicit descriptors and examples 
to inform their pedagogical choices. The challenge for the teacher is to recognise and then 
capitalise on opportunities for developing pattern and structure, i.e., can you show the 
same pattern (structure) in a different mode? A more critical question is how we develop 
teacher content knowledge and pedagogical content knowledge to support the type of 
thinking that leads to generalisation.  

‘Looking Beyond’: Pattern and structure and spatial reasoning 
Pattern and structure ‘meets’ spatial reasoning: Connecting mathematics learning with 
spatial reasoning 2017-2020. 
Adopting a transdisciplinary perspective has raised new questions about how an Awareness 
of Mathematical Pattern and Structure is inextricably linked with spatial reasoning 
(Mulligan, Woolcott, Mitchelmore & Davis). The Knowledge Synthesis of Spatial 
Reasoning (Bruce et al., 2016), and the studies on pattern and structure (Mulligan and 
colleagues), had gained impetus in creating transformative pedagogies that will promote 
spatial reasoning as integral to mathematics learning for the future. A Spatial Reasoning 
Mathematics Program will be created for Grades 3 to 5 engaging students in spatial 
problem solving, and encouraging them to generalise their solutions by looking for 
similarities, differences and structural connections. The project aims to provide a more 



 
challenging and integrated view of mathematics learning by leveraging the recent progress 
made by the international Spatial Reasoning Study Group.  
 
An integrated conceptual frame underpins this proposed study, which will allow analyses, 
of the complex conceptual connectivity involved in learning mathematics, using visual 
maps created through network analytic tools. Network mapping will provide a 
representation of how students’ learning of mathematical and spatial concepts are 
interconnected, rather than as a linear, compartmentalised view. This may demonstrate that 
there are many different pathways that individuals adopt through a complex system of 
mathematics learning. 
 
The issues discussed at the recent Topic Group in Early Childhood Mathematics at the 
ICME-13, (2016) supported greater consensus about the need for studies focused on the 
big ideas, or the study of underlying mathematical processes. It seemed that 30 years since 
ICME-5 we had come along way—a more holistic and integrated perspective on 
mathematics learning. While studies on domain-specific concepts and traditional aspects of 
early numeracy were still represented, the common aim of the group was to explain and 
describe the wide variation in early mathematical competence. Some new questions were 
proposed about the importance of mathematical structural development and whether simple 
forms of mathematical generalisation could be promoted much earlier than traditionally 
expected. Participants questioned whether the long-term influence of the early 
development of mathematical structure could result in more effective but very different 
learning outcomes for older students. Another approach discussed the impact of 
technological toys and tools on mathematical structural development and how this would 
provide a more coherent picture of how children’s mathematical development may be 
changing and adapting to dynamic learning environments.  

 

	‘Looking forward’ we can aim to explore further aspects of AMPS: the possibility that low 
AMPS in early childhood could predict poor performance in mathematics throughout 
schooling, particularly in relation to algebraic thinking.  Extending the AMPS construct to 
the later years of schooling will involve studies of learning trajectories of students beyond 
the early years of schooling whose mathematical and scientific reasoning is enhanced by a 
structural approach. My interest also lies in the application of the PASMAP approach to 
assisting those students with special needs, students with low levels of AMPS who may be 
prone to difficulties in learning mathematics, and students with advanced AMPS who are 
gifted at mathematics. This presentation has raised many questions about the way that we 
might view early mathematics learning and the development of deep mathematical 
thinking. I will raise just one more critical question as my concluding remark —What are 
the consequences for those children who do not develop mathematical structures at an 
early age, and how can we as researchers ensure that we make positive impact on teaching 
and learning?  
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