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The Australian Curriculum: Mathematics calls for the concurrent development of 
mathematical skills and mathematical reasoning. What are the big ideas of mathematical 
reasoning and is it possible to map their learning trajectories? Using rich assessment tasks 
designed for middle-years students of mathematics, this symposium reports on the 
preliminary phase of a large national study designed to move beyond the hypothetical and 
to provide an evidence-based foundation for learning progressions in mathematical 
reasoning in three key areas of the curriculum: Algebraic Reasoning, Geometrical and 
Spatial Reasoning, and Statistical Reasoning. 

 
Paper 1: Dianne Siemon. Developing Learning Progressions to Support Mathematical  
Reasoning in the Middle Years – Introducing the Reframing Mathematical Futures II 
Project 

This paper presents an overview of the project and discusses the importance of 
mathematical reasoning.  
 

Paper 2: Lorraine Day, Max Stephens, & Marj Horne.  Developing Learning Progressions 
to Support Mathematical Reasoning in the Middle Years – Algebraic Reasoning 

The results of the initial trialling of a set of items designed to identify algebraic 
reasoning, and the big ideas of algebra will be discussed.   

 
Paper 3: Marj Horne & Rebecca Seah. Developing Learning Progressions to Support 
Mathematical Reasoning in the Middle Years – Geometric Reasoning 

Little recent research addresses geometrical and spatial reasoning. This paper reports 
on a hypothesised learning hierarchy and the results from the trial process.  

 

Paper 4: Jane Watson & Rosemary Callingham: Developing Learning Progressions to 
Support Mathematical Reasoning in the Middle Years – Statistical Reasoning 

Using an existing research base, and the outcomes from trial tests, this paper describes 
a learning hierarchy of statistical reasoning.  
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The Australian Curriculum: Mathematics calls for the concurrent development of 
mathematical skills and mathematical reasoning. What are the big ideas of mathematical 
reasoning and is it possible to map their learning trajectories? Using rich assessment tasks 
designed for middle-years students of mathematics, this paper reports on the preliminary 
phase of a large national study designed to move beyond the hypothetical and to provide an 
evidence-based foundation for learning progressions in mathematical reasoning in three key 
areas of the curriculum. 

Why Mathematical Reasoning? 
The Programme for International Student Assessment (PISA) results for 2012 and 

2015 indicate a significant decline in mathematical literacy rates among Australian 15-
year-olds since 2003 (Thomson, De Bortoli, & Buckley, 2013; Thomson, De Bortoli, & 
Underwood, 2016). In particular, the results reported in 2013 suggest that  

interpreting, applying and evaluating mathematical outcomes … is an area of relative strength for 
Australian students, while formulating situations mathematically and employing mathematical 
concepts, facts, procedures and reasoning are seemingly processes of relative weakness (p. x).  

This is consistent with the Middle Years Numeracy Research Project (MYNRP), which 
found that many students in Years 5 to 9 experience considerable difficulty interpreting 
problem situations, applying what they know to solve unfamiliar situations, explaining 
their thinking, and communicating mathematically (Siemon, Virgona, & Corneille, 2001). 
It is also consistent with data from the Trends in International Mathematics and Science 
Study 1999 Video Study that led Stacey (2003) to call for an increased focus on 
mathematical reasoning. Although these capacities are recognised and valued in the 
Australian Curriculum: Mathematics (ACM) in the form of the four proficiencies, that is, 
conceptual understanding, procedural fluency, mathematical problem solving, and 
mathematical reasoning, these are often not reflected in school mathematics at this level 
where: 

• mathematics is typically represented as a set of disconnected topics and skills to 
be demonstrated and practiced rather than explored, discussed and connected 
(Shields & Dole, 2013; Siemon, Bleckly, & Neal, 2012) 

• the vast majority of textbook problems at Year 8 tend to be relatively low-level, 
skill-based repetitious exercises (Vincent & Stacey, 2008) 

A focus on mathematical reasoning is needed to equip teachers with the knowledge, 
confidence and disposition to go beyond narrow skill-based approaches to teaching 
mathematics in the middle years. Defined broadly in the ACM as a “capacity for logical 
thought and actions”, mathematical reasoning has a lot in common with mathematical 
problem solving, but it also relates to students’ capacity to see beyond the particular to 
generalize and represent structural relationships, which is a key aspect of further study in 
mathematics and a key underpinning of Science Technology Engineering and Mathematics 
(STEM)-related studies (Wai, Lubinski, & Benbow, 2009). 



 

 

Why Learning Progressions? 
Australian teachers of mathematics are familiar with scope and sequence charts and 

curriculum documents that imply broad developmental progressions in mathematics 
learning from the early to the post compulsory years of schooling. While the implied 
sequences in Number and Algebra are generally supported by research in the early years 
(e.g., Clarke et al., 2002; Mulligan & Mitchelmore, 2009), the evidence for the implied 
learning sequences beyond the early years and in other domains is less conclusive. One of 
the reasons for this is that although there has been considerable research on particular 
aspects of these domains in the middle years of schooling, much of this is “fragmented due 
to the variations in research questions and methods” (Confrey & Malone, 2014, p. xiv).  

A more pervasive issue is the fact that curriculum content descriptors are generally 
expressed in a form that allows observation and measurement with little/no indication of 
their relative importance or how they connect to the ‘big ideas’ in mathematics needed to 
ensure students make progress. This situation inevitably privileges skills over concepts and 
de-emphasises the processes of mathematical problem solving and reasoning. Research is 
needed to identify big ideas and developmental pathways that underpin mathematical 
reasoning in the middle years of schooling to give “teachers, textbook authors and 
curriculum writers a sense of what type of reasoning they can expect and encourage at each 
level and in what directions students’ reasoning should be developed” (Stacey, 2010, p. 
19). 

It is only relatively recently that learning progressions/trajectories per se have become 
the focus of systematic research efforts (e.g., Clements, 2002; Confrey, 2008; Daro, 
Mosher, & Corcoran, 2011; Siemon, Izard, Breed, & Virgona, 2006). Prompted by 
Simon’s (1995) introduction of the notion of Hypothetical Learning Trajectories, there is 
debate about the meaning and use of learning progressions/trajectories in mathematics 
education (e.g., see the special edition of Mathematics Teaching and Learning, 6(2) in 
2004). However, a common element in the different interpretations and use of the terms is 
the notion that learning takes place over time and that teaching involves recognising where 
learners are in their learning journey and providing challenging but achievable learning 
experiences that support learners’ progress to the next step in their particular journey.  

Outline of the RMF II Project 
Reframing Mathematical Futures II (RMFII) is a three-year project funded by the 

Australian Government Department of Education and Training under the auspices of the 
Australian Mathematics and Science Partnership Programme (AMSPP). The project is 
working with industry partners and practitioners in each State and Territory and the 
Australian Association of Mathematics Teachers (AAMT) to build a sustainable, evidence-
based, integrated learning and teaching resource to support the development of 
mathematical reasoning in Years 7 to 10 comprising: 

• evidence-based learning progressions in algebraic, statistical, and spatial 
reasoning that can be used to inform teaching decisions and the choice of 
mathematics learning activities and resources by teachers and students; 

• a range of validated, rich assessment tasks and scoring rubrics that can be used 
to identify what students know and understand in terms of the learning 
progressions, inform starting points for teaching and show learning over time 
(i.e., as pre- and post-tests); 



 

 

• detailed teaching advice linked to the learning progressions that establish and 
consolidate learning at the level identified and introduce and develop the ideas 
and strategies needed to progress learning to the next level of the framework;  

• indicative resources to support the implementation of a targeted teaching 
approach in mixed ability classrooms. 

Methodology of the RMF II Project 
The RMFII project has been designed in terms of three distinct but overlapping phases. 

Phase 1 focussed on the identification of hypothetical learning progressions from the 
research literature to inform task design, the provision of professional learning to support a 
targeted teaching approach (Siemon, 2017) to mathematics in the middle years and the 
development and trial of rich tasks to assess algebraic, statistical and spatial reasoning at 
this level. Rasch modelling (Bond & Fox, 2015) was used to analyse data collected from 
the trial tasks and the findings used together with the hypothetical learning progressions to 
formulate Draft Learning Progressions in each area of interest.  

Phase 2 is focussed on the preparation and use of multiple assessment forms for 
mathematical reasoning, the analysis of student and teacher surveys, and the development 
of teaching advice and professional learning modules to support a targeted teaching 
approach. The final phase of the project will focus on the development and publication of 
project outcomes and reports. Project partners in all Australian States and Territories 
identified between four to six secondary schools in their jurisdiction that met the funding 
requirements (i.e., located in lower socio-economic regions with diverse populations). A 
specialist teacher was identified from each school and is being supported by the research 
team to work with up to 6 other teachers in their school to trial assessment tasks and 
implement a targeted teaching approach to mathematical reasoning. A total of 32 
secondary schools, approximately 80 teachers, and 3,500 students in Years 7 to 10 are 
involved in the project.  

This symposium will consider preliminary findings from the first phase of the RMFII 
project, which was focussed on the development of evidence-based Draft Learning 
Progressions in algebraic, statistical and spatial reasoning. This phase was designed to 
address the following research questions. 

• To what extent can we develop rich tasks to accurately identify key points in 
the development of mathematical reasoning in the junior secondary years? 

• To what extent can we gather evidence about each student’s achievements with 
respect to these key points to inform the development of a coherent learning 
and assessment framework for mathematical reasoning? 

The first step in this process involved the derivation of hypothetical learning 
progressions in each domain from a review of the literature by specialist members of the 
research team. A range of assessment tasks and scoring rubrics were then devised to assess 
key elements of these progressions. These tasks were arranged in 24 different but 
overlapping forms and trialled with 3,075 students from 18 trial schools and coded by a 
team at RMIT University. The resulting data were analysed using the Rasch partial credit 
model (Masters, 1982) using Winsteps 3.92.0 (Linacre, 2016).  

Rasch analysis allows both students’ performances and item difficulties to be measured 
using the same log-odds unit (the logit), and placed on an interval scale (Bond & Fox, 
2015). Items that did not fit the model were examined and refined. A small number of 
items was removed as not useful or too complex for students to understand. A refined set 



 

 

of overlapping forms was constructed and used with 3,366 students from participating 
research schools. This allowed the further refinement of the Draft Learning Progressions 
and it is these and detailed processes involved that are highlighted in this symposium.  

The three related papers consider the derivation of the Draft Learning Progressions for 
algebraic reasoning, statistical reasoning, and geometric reasoning respectively. In each 
case, eight incremental Zones were identified on the basis of the hierarchy of items created 
by the Rasch analysis. Descriptors of student behaviour were derived from a consideration 
of the cognitive demands of items within each Zone. Where there are insufficient items in a 
Zone to address a particular ‘big idea’ or generate descriptors, additional items will be 
developed, trialled and used to further inform the Draft Learning Progressions. 
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As part of the Reframing Mathematical Futures II Project on Mathematical Reasoning, 
algebraic reasoning was identified as one of the three areas to be investigated. This 
involved developing a hypothetical learning progression for algebra to inform the design of 
assessment tasks to test the progression. The assessment forms were then sent to trial 
schools and the data was analysed using Rasch Analysis. This paper reports on the analysis 
of the preliminary data received and outlines some implications for teaching. 

The Australian Curriculum: Mathematics (Australian Curriculum, Assessment and 
Reporting Authority [ACARA], 2016) has combined Number and Algebra in a single 
strand to allow both to be developed together. Developing both numerical and algebraic 
reasoning together provides students with the opportunity to notice structure and powerful 
schemes for thinking about number patterns and relationships (Carpenter, Franke, & Levi, 
2003). This implies that classroom practices need to adapt to build a more robust 
understanding of mathematics as a process of generalisation and formalisation, or as Kaput 
(1998) expressed it, ‘algebrafying’ the process. This transformation could be viewed as 
moving classroom practice from one of following rules and memorisation to one of sense-
making (Flewelling, Kepner, & Ewing, 2007; Schoenfeld, 2008). 

In order to identify a hypothetical learning progression for algebraic reasoning a review 
of the literature was conducted to identify the big ideas of algebra. Although the focus was 
to be on algebraic reasoning, it was considered appropriate to identify algebraic content, as 
students, at different levels, need content about which to reason. Underpinning this content 
focus was the understanding that in order to reason algebraically at the highest level 
involves visualisation, being able to move fluidly between multiple representations and 
having the language and discourse to reason mathematically. 

Initially, hypothetical learning progressions were developed for five big ideas in 
algebra identified as: Pattern and Sequence, Generalisation, Function, Equivalence, and 
Equation Solving (Blanton, & Kaput, 2011; Blanton et al., 2015; Carraher, Schliemann, 
Brizuela, & Earnest, 2006; Fujii & Stephens, 2001; Mason, Stephens, & Watson, 2009; 
Panorkou, Maloney, & Confrey, 2013; Perso, 2003; Stephens & Armanto, 2010; Watson, 
2009). However, as there was considerable overlap in the descriptors at this stage, it was 
decided to re-organise these in terms of: Pattern and Function, Equivalence, and 
Generalisation. An example of the hypothetical learning progression developed for 
Generalisation is shown in Table 1. 

Table 1 
The Hypothetical Learning Progression for Generalisation 

Zone Descriptor 
1 Explain a generalisation of a simple physical situation. 



 

 

2 Explore and conjecture about patterns in the structure of number, identifying 
numbers that change and numbers that can vary. 

3 Explain generalisations by telling stories in words, with materials and using 
symbols.  

4 Explain generalisations using symbols and explore relationships using technology. 
5 Follow, compare and explain rules for linking successive terms in a sequence or 

pair quantities using one or two operations. 
6 Use and interpret basic algebraic conventions for representing situations involving 

a variable quantity. 
7 Use and interpret algebraic conventions for representing generality and 

relationships between variables and establish equivalence using the distributive 
property and inverses of addition and multiplication. 

8 Combine facility with symbolic representation and understanding of algebraic 
concepts to represent and explain mathematical situations. 

 
Once the hypothetical learning progressions were identified on the basis of prior 

research, assessment tasks containing one or more items were compiled into forms that 
were designed to evaluate the three big ideas across Zones. Some tasks/items addressed a 
particular big idea while others assessed several of the big ideas in a single task. For 
instance, the seven-item Relational Thinking task was designed to evaluate key aspects of 
the hypothetical learning progressions for the two big ideas of Equivalence and 
Generalisation (see Table 2). 

Table 2 
The Relational Thinking Items and Rubrics 

Item 
No. 

Item  Rubric 

1 What numbers would 
replace the ? to make a 
true number sentence (the 
numbers may be 
different). Explain your 
reasoning 

? + 521 = 527 + ? 

0 
1 

 
2 
3 

No response or irrelevant response 
Incorrect response but with correct reasoning based on the 
relationship between 521 and 527 
Two correct numbers given but little/no reasoning 
Two correct numbers given where the number on the left is 
6 more than the number on the right with reasoning that 
reflects relationship between 521 and 527 
 

2 Find a different pair of 
numbers that would make 
the number sentence 
above true 

0 
1 

No response or irrelevant response 
A different and correct pair 
 

3 Describe how you could 
find all possible pairs of 
numbers that would make 
this a true sentence. 

0 
1 
2 

No response or irrelevant response 
Incorrect attempt at describing based on previous answers 
Statement regarding difference of 6 or expression showing 
difference 

 4 What numbers would 
replace the ? to make a 
true number sentence (the 
numbers may be 
different)? 

? – 521 = ? - 527 

0 
1 
 

2 
 

3 

No response or irrelevant response 
Incorrect response but with correct reasoning based on the 
relationship between 521 and 527 
Two correct numbers given but little/no reasoning, may 
include some calculations 
Two correct numbers given where the number on the right is 
6 more than the number on the left, with reasoning that 



 

 

reflects the relationship between 521 and 527 

5 Find another set of 
numbers that would make 
the number sentence in 4 
true. 

 

0 
1 
 

No response or irrelevant response 
A different and correct pair 

6 Describe how you could 
find all possible pairs of 
numbers that would make 
this a true number 
sentence 

0 
1 
2 

No response or irrelevant response 
Incorrect attempt at describing based on previous answers 
Statement regarding difference of 6 or expression showing 
the difference 

7 What can you say about 
the relationship between c 
and d in this equation? 

c x 2 = d x 14 

0 No response or irrelevant response 
Specific solution provided (c = 7 and d = 1) or a general 
statement (c is 7 times the number d) 
Statement correctly describes the relationship (c is 7 times 
the number d) 

Results 
Rasch analysis was used to rank student responses to the algebraic reasoning tasks and 

create a Draft Learning Progression for Algebra. From this it was possible to identify 
where different student responses to each of the Relational Thinking items were located on 
the progression. For instance, a score of 2 on RT1 (indicated by RT1.2 in Table 3 below) 
was located in Zone 3 while a score of 3 on RT1 (RT1.3) was located in Zone 6. Table 2 
shows a range of responses to the RT items and their relationship to the big ideas of 
Equivalence (Equiv) or Generalisation (Gen).  
Table 3 
Results of Rasch analysis on the Relational Thinking Items 
RT1.2 
Zone 3 
Equiv 

RT1.3 
Zone 6 
Gen 

RT2.1 
Zone 4 
Equiv 

RT3.1 
Zone 5 
Equiv 

RT3.2 
Zone 6 
Gen 

RT4.2 
Zone 5 
Equiv 

RT4.3 
Zone 7 
Gen 

RT5.1 
Zone 5 
Equiv 

RT6.2 
Zone 7 
Gen 

RT7.1 
Zone 4 
Equiv 

RT7.2 
Zone 6 
Gen 

The different student responses indicated by the scores for each item in Table 2 range 
from Zone 3 to Zone 7. Those that relate to Equivalence range from Zone 3 to Zone 5. 
Finding a correct pair of numbers to make a correct number sentence (RT1.2) was the 
easiest at Zone 3. Finding another correct pair of numbers to the same question (RT2.1) 
was at Zone 4. Whereas, finding two correct pairs of numbers that satisfied the subtraction 
number sentence (RT4.4) was scaled higher at Zone 5. Components that required students 
to give a general explanation of a relationship were scaled at Zone 6 or Zone 7. 
Generalisation items were typically more difficult than Equivalence items; and among 
Generalisation items, as Table 2 shows, explanations involving subtraction or difference 
tended to be more difficult than those involving addition relationships. This confirms 
research findings by Stephens and Armanto (2010), Mason et al. (2009), and Carpenter et 
al. (2003). 

In most cases incorrect responses to items in the Relational Thinking task were located 
in the lower Zones of the progression. For example, giving an incorrect response to the 
missing numbers in item 1 was scaled at Zone 1. However, an incorrect attempt at 
describing the relationship between the two missing numbers based on previous answers 
for item 2 was at Zone 4; and an incorrect attempt at describing the relationship based on 



 

 

previous answers for item 6 was scaled at Zone 5. These latter two results which embody 
incorrect or incomplete generalisations show that, for our upper primary and junior 
secondary students, generalisation and explanation of algebraic thinking remains quite 
difficult. As the research of Kaput et al. (1998), Carraher et al. (1996), and Blanton et al. 
(2015) demonstrated, helping students to articulate and refine their algebraic thinking, 
especially their algebraic reasoning and justification, are complex and challenging tasks 
even for capable teachers. These abilities require constant and supportive cultivation if 
they are to be achieved by most students. The preliminary data presented above show that 
they have been achieved by some students. Expanding the range of achievement, especially 
with respect to the development of reasoning, remains our challenge as this project moves 
into its next phase.  

References 
Australian Curriculum, Assessment and Reporting Authority. (2016). Australian curriculum: Mathematics. 

Retrieved from http://www.australiancurriculum.edu.au/mathematics/curriculum/f-10?layout=1 
Blanton, M., & Kaput, J. (2011). Functional thinking as a route into algebra in the elementary grades. In J. 

Cai & E. Knuth (Eds.), Early algebraization: Advances in mathematics education (pp. 5-23). Heidelberg, 
Germany: Springer. 

Blanton, M., Stephens, A., Knuth, E., Gardiner, A.M., Isler, I., & Kim, J. (2015). The development of 
children’s algebraic thinking: The impact of a comprehensive early algebra intervention in third grade. 
Journal for Research in Mathematics Education, 46(1), 39-87. 

Carpenter, T., Franke, M., & Levi, L. (2003). Thinking mathematically: Integrating arithmetic and algebra in 
the elementary school. Portsmouth, NH: Heinemann. 

Carraher, D., Schliemann, A., Brizuela, B., & Earnest, D. (2006). Arithmetic and algebra in early 
mathematics education. Journal for Research in Mathematics Education, 37(2), 87-115. 

Flewelling, G., Kepner, H., & Ewing, B (2007). Rich learning tasks. Paper presented at the Mathematics 
Education into the 21st Century Project Conference, Charlotte, NC. 

Fujii, T., & Stephens, M. (2001). Fostering an understanding of algebraic generalisation through numerical 
expressions. In H. Chick, K. Stacey, J. Vincent, & J. Vincent (Eds.), Proceedings of the 12th conference 
of the International Commission on Mathematics Instruction (Vol. 1, pp. 258-264). Melbourne: ICMI. 

Kaput, J. (1998).Transforming algebra from an engine of inequality to an engine of mathematical power by 
“algebrafying” the K-12 curriculum. In S. Fennell (Ed.), The nature and role of algebra in the K-14 
curriculum: Proceedings of a national symposium (pp. 25-26). Washington, DC: National Research 
Council, National Academy Press. 

Mason, J., Stephens, M., & Watson, A. (2009). Appreciating mathematical structure for all. Mathematics 
Education Research Journal, 21(2), 10-32. 

Panorkou, N., Maloney, A., & Confrey, J. (2013). A learning trajectory for early equations and expressions 
for the common core standards. In M. Martinez, & A. Castro Superfine (Eds.), Proceedings of the 35th 
Annual Meeting of the North American Chapter of the International Group for the Psychology of 
Mathematics Education (pp. 417-424). Chicago, IL: University of Illinois at Chicago. 

Perso, T. (2003). Everything you want to know about algebra outcomes for your class, K-9. Perth: 
Mathematical Association of Western Australia. 

Stephens, M., & Armanto, D. (2010). How to build powerful learning trajectories for relational thinking in 
the primary school years. In L. Sparrow, B. Kissane, & C. Hurst (Eds.), Shaping the future of 
mathematics education: Proceedings of the 33rd Annual Conference of the Mathematics Education 
Research Group of Australasia (pp. 523-530). Fremantle, WA: MERGA. 

Watson, A. (2009). Key understandings in mathematics learning, Paper 6: Algebraic reasoning. London, 
England: Nuffield Foundation. 



Horne & Seah 

(2017). In A. Downton, S. Livy, & J. Hall (Eds.), 40 years on: We are still learning! Proceedings of the 40th 
Annual Conference of the Mathematics Education Research Group of Australasia (pp. 655-658). Melbourne: 
MERGA. 

Learning Progressions to Support Mathematical  
Reasoning in the Middle Years: Geometric Reasoning 

Marj Horne 
Australian Catholic University 

<Marj.Horne@acu.edu.au> 

Rebecca Seah 
RMIT University  

<rebecca.seah@rmit.edu.au> 

Geometric reasoning is an important construct in excelling in STEM related disciplines. 
Yet this is a topic that is most neglected and least understood by teachers and students 
alike. As part of the Reframing Mathematical Futures II Project, this paper reports the 
development of a learning progression that provides explicit validated mapping of students’ 
growth in geometric thinking. Thirty-six items collated into two assessment forms were 
administered and analysed using Rasch modelling. Eight learning Zones were identified.  

The Australian Curriculum: Mathematics (Australian Curriculum, Assessment and 
Reporting Authority, 2016) made a distinction between ‘spatial reasoning’, as one of the 
six interrelated elements in the numeracy learning continuum, and ‘geometric reasoning’ as 
one of the content descriptors to be taught from Year 3. Beyond this, there are scant details 
in clarifying the differences between these and how to help children develop both 
reasoning abilities. Spatial reasoning is the ability to see, inspect and reflect on spatial 
objects, images, relationships and transformations (Battista, 2007). Geometric reasoning is 
the use of critical thinking, and spatial reasoning to logically deduce and find new 
geometric relationships in problem situations. Its success is dependent upon the use of 
geometric knowledge and spatial reasoning to identify and formulate axiomatic 
relationships. Research affirmed that individuals progress through distinct stages of 
geometric thinking: visualise, describe, analyse, infer and deduce geometric relationships, 
and formal proof (Battista, 2007; van Hiele, 1986). These five stages are seen as 
interconnected and developed progressively with various degrees of emphasis and 
importance depending on the task demand. Proficiency in one domain is supported by good 
command of stages developed earlier. How to move students through these stages of 
thinking is the issue in question, hence the development of a hypothetical learning 
progression (HLP).  

Learning progressions are a set of empirically grounded and testable hypotheses about 
how students’ understanding of, and ability to use, specific discipline knowledge within a 
subject domain in increasingly sophisticated ways develops through appropriate instruction 
(Corcoran, Mosher, & Rogat, 2009). The purpose is to provide explicit validated mapping 
of students’ growth in thinking and instructional advice on how to promote thinking 
through the stages. We take the position that the development of geometric thought is 
underpinned by the degree of connectedness between representation, visualisation and 
mathematical discourse. Geometric representations in the form of lines, shapes and 
diagrams are schematic, bound by their “formal concept definitions” (Tall & Vinner, 1981, 
p. 152) and developed through the process of visualising, a form of cognitive process in 
which objects are interpreted within the person’s existing network of beliefs, experiences, 
and understanding (Phillips, Norris, & Macnab, 2010). How accurately individuals 
interpret the image is dependent upon how well they communicate what they see. Students 
literally talk themselves into understanding geometric properties. Evidence suggests that 
quality and targeted teaching is crucial to help shift thinking to the next level (Corcoran et 
al., 2009). 



 

 

Method 
A survey of literature shows that inability to recognise geometrical shapes in non-

standard orientation, perceive class inclusions of shapes, visualise geometrical solids in 2D 
format, and solve measurement problems that require spatial reasoning are well 
documented as problems students face when learning geometry (Battista, 2004; Burger & 
Shaughnessy, 1986; Elia & Gagatsis, 2003; Levenson, 2012). To ensure that sufficient data 
were collected to inform the design of the HLP, a bank of assessment questions was first 
designed and administered to test their reliability. The questions were designed to assess 
what we expect middle school students to be able to do, and focused on reasoning rather 
than procedural skills. They are grouped into three domains: (1) properties and hierarchy, 
(2) transformation of relationships, and (3) geometric measurement. Within each domain is 
a set of mathematical concepts vital for the development of geometric knowledge.  

The first trial consisting of 62 items was administered to 390 students to determine its 
reliability and validity. These were marked by two markers and validated by a team of 
expert consultants to ensure the accuracy of the marking rubric and data entry. The 
questions were reduced to 36 items, collated into two forms and sent out to Year 7 to 9 
students in participating schools. The test was administered to 755 students with 742 valid 
responses. 

Results 
Rasch analysis of the responses resulted in identification of eight distinct thinking 

Zones (see Table 1). To facilitate better understanding of the formation of HLP, consider 
the concept of symmetry (Figure 1). It is an important aspect for developing spatial 
reasoning and understanding geometric properties as it promotes visualisation and 
geometric discourse as students learn to identify and reason about space and patterns. The 
code for each question, GSYM, indicates Geometry Symmetry. 
 

5 Symmetry 
Look at the shapes below 

a [GSYM1] On each of these shapes draw 
all lines of symmetry. 

b [GSYM2] For each of these shapes in part 
a, decide whether there is any 
reflectional or rotational symmetry and 
write the letters in the appropriate space 
in the table below.  
 Has rotational symmetry Does not have rotational 

symmetry 

Has reflectional symmetry   

Does not have reflectional 
symmetry 

  

 
c [GSYM3] How do you know if a shape has rotational symmetry? 

Figure 1. Assessment questions on concept of symmetry. 



 

 

Score Description for GSYM1 Description for GSYM2 

0 No response or irrelevant response No response or irrelevant response 

1 No shapes having all lines drawn correctly Only one shape (letter) correctly placed 

2 All symmetry line(s) drawn correctly on one 
shape (others may be incorrect) 

At least 2 correctly placed 

3 Correct lines drawn on C and D but incorrect 
lines drawn on at least one other shape  

At least 4 correctly placed 

4 D: one line correctly drawn horizontally 
through centre 
C: five lines drawn from each point to 
opposite reflex angled corner 
No lines drawn on A, B or E 

C has both rotational and reflectional symmetry 
A, B have rotational symmetry but no reflectional 
symmetry 
D has reflectional symmetry but no rotational 
symmetry 
E has no symmetry 

 Description for GSYM3 

0 No response or irrelevant response 

1 An attempt at an explanation but lacking clarity 

2 Some explanation about turning shape part way around circle and it looking the same – perhaps 
around a pin 

Figure 2. Marking rubric for the symmetry question. 

The eight Zones that were identified by the Rasch analysis are shown in Table 1. The 
responses to the symmetry question ranged from Zone 2 to Zone 8. Completing GSYM1 
and GSYM2 with a score of 4 was in Zone 8 demonstrating understanding of reflectional 
and rotational symmetry. Giving a clear explanation of rotational symmetry in GSYM3 
was in Zone 6. For GSYM2, students correctly placing one of the shapes in the correct 
position (score 1) demonstrated that they could visualise the 2D shape from a different 
perspective, rotating it and reflecting it, hence Zone 4, whereas identifying the reflectional 
symmetry of one shape (GSYM1, score 1) was in Zone 2. 
Table 1 
Hypothetical Learning Progression for Geometric Reasoning 

Zone Indicators 

1 
Recognises shapes by appearance and common orientation, shows emerging recognition of objects 
from different perspective, symmetry of objects and shapes and coordinate system. 

2 Recognises reflection symmetry, nets of simple solids and simple shapes, shows emerging 
understanding of measurement concepts. 

3 
Able to visualise some objects from different perspective and use coordinates, uses one or two 
properties or attributes (insufficient) to explain their reasoning about shapes and measurement. 

4 

Able to visualise objects from different perspective, incomplete reasoning in geometric and 
measurement situations, performs measurement calculations but attends to only one attribute, gives 
directions on a map from personal rather than other viewer’s perspective. 



 

 

5 

Able to visualise and represent 3D objects using 2D platform (Nets), uses either properties or 
orientations to reason in geometric situation, uses landmarks but retains personal orientation when 
providing directions, demonstrates knowledge of dilution and coordinate systems, provides partial 
solutions and explanations when calculating measurement situations. 

6 

Able to make deductions about angle situations and use properties accurately when reasoning about 
spatial situations but explanations are limited and lack knowledge of geometry hierarchy, provides 
accurate directions from a map, geometric and measurement arguments rely on examples/counter 
examples, omits one step when calculating multi-step measurement problems. 

7 Beginning to recognise necessary and sufficient conditions, uses sound reasoning in 
argument/explanations, explanations often are procedurally based. 

8 

Constructs arguments based on multiple properties of 2D shapes and 3D objects, using the 
necessary and sufficient conditions to reason about geometric and measurement situations, 
conjectures and propositions (and theorems); demonstrates understanding of both reflectional and 
rotational symmetry. 

These Zones reflect current students’ geometric reasoning. Australian students 
compare poorly with students from other countries in geometry (Thompson, 2010). These 
Zones are not as advanced as we would desire for our students in years 7-10. Further 
research on improving teaching and learning practices will help to refine the HLP (Briggs 
& Peck, 2015). Indeed, the challenge now is to use this information to assist teachers to 
improve geometric reasoning in their classrooms and this assessment provides a tool to 
assist teachers to focus on targeting their teaching to the key ideas necessary in the 
development of understanding and reasoning in geometry. 
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As part of the Reframing Mathematical Futures II (RMFII) Project, Statistical Reasoning 
was identified as one of three areas of Mathematical Reasoning to be investigated. A 
hypothetical learning progression for statistics was developed based on previous research. 
Assessment tasks designed to address different Zones of the progression were sent to trial 
schools and the data were analysed using Rasch Analysis. This paper reports on the 
analysis of the preliminary data received and gives some implications for teaching. 

Statistical reasoning has been a more recent addition to the mathematics curriculum 
than algebraic or geometric reasoning. Following the National Council of Teachers of 
Mathematics (NCTM, 1989) in the United States, A National Statement on Mathematics 
for Australian Schools was published by the Australian Education Council (AEC) in 1991. 
‘Chance and Data’ was one of five content areas covered in four Bands (A to D) over the 
years of schooling. The expectations of the National Statement were the foundation for 
much of the research in statistics education at the school level in Australia in the 1990s, 
conducted using surveys and interviews with students from Year 3 to Year 10. Basing 
analysis of student responses on the SOLO Model of Biggs and Collis (1982), hierarchical 
development was identified in relation, for example, to beginning inference (Watson & 
Moritz, 1999), to sampling (Watson & Moritz, 2000a), to average (Watson & Moritz, 
2000b), and to probabilistic beliefs (Watson & Moritz, 2003). This work was consolidated 
for survey data by Watson and Callingham (2003), in a suggested six-level uni-
dimensional construct for statistical literacy. Further analysis by Callingham and Watson 
(2005) identified three subgroups of items that were related to the Chance and Data content 
of the curriculum. These were named Average/Chance (AC), Sample/Inference (SI), and 
Graphing/Variation (GV). 

In the light of the more recent release of the Australian Curriculum: Mathematics 
(Australian Curriculum, Assessment and Reporting Authority, 2010-2016), these three 
subgroups were considered against the five statistics and probability big ideas proposed as 
a foundation for the mathematics curriculum implementation (Watson, Fitzallen, & Carter, 
2013): Variation, Expectation, Distribution, Randomness, and Informal Inference. 
Variation is the fundamental concept underlying the others, Expectation underpins chance 
and calculations of averages, Informal Inference and Randomness cover appreciation of 
sampling, and Distribution includes graphing as well as other representations. Recognising 
the fundamental influence of Variation, the three reasoning big ideas for the Reframing 
Mathematical Futures II (RMFII) project were hypothesised as Variation in Expectation 
(AC), Variation in Distribution (GV), and Variation in Inference (SI). These big ideas can 
be considered separately at the beginning of a learning progression but, as learning 
progresses, they interact with each other to provide more sophisticated reasoning. Figure 1 
shows the hypothetical learning progression for statistical reasoning, including eight Zones 
to be consistent with the previous results related to multiplicative thinking (Siemon, 
Virgona, & Corneille, 2001). 



 

 

Big Idea 

Zone 
Expectation (AC) Distribution (GV) Inference (SI) 

Zone 
1 

Idiosyncratic response or single procedural focus 
Uncertainty expressed as 50% Reads single value on graph Ignores context 

Zone 
2 

Considers aggregated information but without recognising value 
Anything can happen Describes isolated features of a 

graph 
One characteristic of a sample 

Zone 
3 

Emerging statistical appreciation but without explanation 
Claims for average without 
justification 

Elaborated physical description 
of graphs 

Choose “all” for sample 

Zone 
4 

Recognises influence of variation but interprets inappropriately 
Rejects “luck”; suggests 
unlikely 

Does not distinguish scale in 
graph reading 

Recognises sample but not its 
bias 

Zone 
5 

Straightforward explanation and simple numerical justification 
Orders chance phrases 
correctly 

Appropriate attention to graph 
details 

Partial recognition of sample 
requirements 

Zone 
6 

Informal appreciation of uncertainty and variation in choices 
Recognises outlier Recognises correct variation in 

graphs 
Suggests random sampling 

Zone 
7 

Makes inferences across ideas using proportional reasoning 
Creates appropriate probability 
distribution 

Creates hypothesis based on 
data 

Criticises sample size and bias 

Zone 
8 

Integrates proportional, statistical, and contextual reasoning 
Correct association in 2-way 
tables 

Conclusion with both positives 
& negatives 

Includes human/ psychological 
component 

Figure 1. Hypothetical learning progression for statistical reasoning with selected examples. 

Based on the hypothetical learning progression for statistical reasoning in Figure 1 and 
items used in previous research, assessment forms were devised for the middle school 
students in the RMFII project consisting of statistical reasoning tasks each of which had 
one or more items. Three forms included only statistics tasks, whereas six others contained 
a mix of statistics tasks with other tasks from algebra and geometry. Common tasks and 
items linked the forms. The rubrics for individual items suggested scores of between two 
and five to distinguish increasingly sophisticated responses. The Rasch analysis allocated 
the rubric scores across eight Zones of the construct of statistical reasoning, mapping 
students’ overall performances on a logit scale in relation to the difficulty of the items.  

Results and Discussion 
No single task addressed every Zone of the hypothetical learning progression for 

statistical reasoning, but when considered together some tasks with their associated items 
related to the same context within a big idea and provided results across several Zones. An 
example shown in Figure 2 employs a task related to the tossing of a fair coin with four 
items. Items were labelled using the convention S for statistical reasoning with a 3 letter 
identifier that described the context (CON for coin toss) with a number/letter identifier for 
the specific item. The analysis of item difficulty for the items in Figure 2 illustrates each of 
the Zones in the hypothetical learning progression for statistical reasoning. At Zone 1, 
SCON1A and SCON1B show idiosyncratic reasoning, a response being “I think 2 
tails…because 4÷2=2 so the average is 2” for SCON1B. Zone 2 is the highest response for 
SCON1A but more sophistication is possible for SCON1B with Zone 2 responses 
including “it’s a 50% chance” or “you can’t really tell.” The lowest level of SCON2 is 



 

 

Zone 3, with responses indicating equally likely proportions (e.g., “20, 20, 20, 20, 20”) or 
apparently random proportions (e.g., “10, 30, 40, 1, 19”).  

 
SCON1A: Imagine you are 
playing game where you 
throw a coin 4 times. How 
many tails do you think 
might come up?  

Score Zone Rubric Description for SCON1A 
0  No response or irrelevant response 

1 1 Any other number, “you don’t know, could be any 
of them”. 

2 2 2 tails or 50% 
 

SCON1B: Explain why. 

Score Zone Rubric Description for SCON1B 
0  No response or irrelevant response 

1 1 Idiosyncratic reasoning or possible 
misinterpretation.  

2 2 

2 because there is a 50% chance, 50-50 of throwing 
a head or tail, probability of a tail 1 in 2. 
Recognises variation by stating “You can’t really 
tell how many tails might come up”.  

3 8 2 but also recognising variation and/or attempts to 
quantify the highest likelihood. 

 

SCON2: Imagine you are 
playing a game where you 
throw a coin 4 times. 
Imagine that 100 people 
played the game. In the table 
below, fill in how many 
people you think will get 
each number of tails. 
 

Number of 
tails 

Number of people 
getting the number of 
tails 

0  
1  
2  
3  
4  

Total 100 
 

Score Zone Rubric Description for SCON2 

0  No response or irrelevant response, or does not add 
to 100. 

1 3 
Assumes equality for all options. 
Seemingly random prediction; gets proportion in the 
wrong spot. 

2 6 

Too narrow or no variation – extreme probabilistic 
outcome. 
Primitive understanding of proportion – 50% 
chance for 2 tails. 

3 7 Appropriate variability displayed incorporating 
probability and distribution.  

 

SCON3: Explain why you 
think these numbers are 
reasonable. 

Score Zone Rubric Description for SCON2 
0  No response or irrelevant response. 
1 4 Idiosyncratic reasoning and personal beliefs. 

2 5 
Reasoning reflecting an even or equal chance for all 
numbers..  
Anything can happen, chance and luck. 

3 6 
Implicit understanding of chance and probability, 
sometimes mentioning 50%, or ½ chance (or answer 
reflecting a ‘4’ but not as clear). 

4 8 Reasoning reflecting aspects of chance and 
probability including some kind of variability.  

 

Figure 2. Example of a task having four items with scores across the hypothetical learning progression for 
statistical reasoning. 

Score 1 in Zone 4 for SCON3, an explanation, reverts to personal beliefs in explaining 
the choices, but within a much more complex context. Whereas choice of equality of 
outcomes is Zone 3 for SCON2, for SCON3 it is Zone 5 reflecting the greater complexity, 



 

 

e.g., “because it adds up to 100.” Zone 6 shows the first primitive use of proportion, e.g., in 
choosing “5, 20, 50, 20, 5” for SCON2, and explaining the values for 100 tosses of a coin 
four times for SCON3, such as “it is more likely people will get 2 out of 4.” For SCON2, a 
Zone 7 response incudes variability within reasonable limits for the appropriate 
proportions. Finally explicit recognition of variation characterises responses at Zone 8. In 
explaining the original likelihood of two tails in four tosses, a response for SCON1B might 
be “2, because it has a 37.5% chance but the others could happen, they are just less 
chance.” For top responses to SCON3, again explicit mention of variability or likelihood is 
included in the explanation. The progression of difficulty between the first two items 
(SCON1A, SCON1B) and second two items (SCON2, SCON3) illustrates the contribution 
of context as the items move from single outcomes to multiple outcomes.  

Several years will pass as students develop the understanding, first to justify the actual 
probability for obtaining two heads when tossing a coin four times and appreciate the 
variation associated with experimentally checking the value, and second to move to 
imagining 100 such repetitions of the four tosses and experiencing variation on completing 
trials. After completing hands-on activities, this problem presents an excellent opportunity 
to introduce computer simulations in the classroom, comparing outcomes among students, 
and increasing the number of trials beyond what can be done by hand. 

The aim of the RMFII project is to provide teachers with ways of identifying and 
acting upon their students’ demonstrated reasoning, in this instance in statistical contexts. 
The initial findings indicate that it is possible to identify a progression and to match tasks 
and items to Zones of this progression. The next phase is to develop materials to lead 
students to being better able to explain their thinking and reasoning as they problem solve. 
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