
Miller & Larkin

(2017). In A. Downton, S. Livy, & J. Hall (Eds.), 40 years on: We are still learning! Proceedings of the 40th
Annual Conference of the Mathematics Education Research Group of Australasia (pp. 381-388). Melbourne:
MERGA.

Using Coding to Promote Mathematical Thinking with Year 2
Students: Alignment with the Australian Curriculum

Jodie Miller
Australian Catholic University

<Jodie.Miller@acu.edu.au>

Kevin Larkin
Griffith University

<k.larkin@griffith.com.au>

In this paper, we present data from a study exploring the use of coding to promote
mathematical thinking. A teaching experiment was undertaken with 40 Year 2 students
participating in six 45-minute lessons of coding (one lesson per week for six weeks). All
lessons were video-recorded and analysed to determine students’ mathematical thinking.
Insights from the study reveal that coding contexts promoted higher levels of mathematical
thinking for Year 2 students including measuring angles, orientation and perspective-
taking, and deducing repeating patterns.

There is an international urgency to improve Science, Technology, Engineering and
Mathematics (STEM) education in preparation for a scientifically and technologically
advanced society (Office of Chief Scientist, 2014). This push is also in response to the
rapid decline in secondary school students’ engagement in STEM disciplines (e.g.,
advanced mathematics, chemistry) (Australian Academy of Science [AAS], 2016).
Disengagement in STEM begins at an early age (Larkin & Jorgensen, 2016), with many
students from the upper primary years onwards failing the most important STEM subject –
mathematics (AAS, 2016). To address this issue, coding has recently been included in the
Australian Curriculum: Technology as a way to “re-engage” students in the sciences and
potentially develop mathematical thinking. One example of a recent government initiative
is the National Innovation and Science Agenda, which funds ($51 million) programs
specifically dedicated to coding for primary school students (Department of the Prime
Minister and Cabinet, 2016). The convergence of policy and curriculum directions is
heartening; however, it is also highly problematic as there is a limited evidence base to
inform the implementation of STEM in classrooms (English, 2016). We were particularly
concerned with: How does the use of coding in primary school classrooms support, or
provide opportunity for, the learning of mathematics? Using the coding program Scratch,
we will discuss the ways that working with such programs provide opportunities to
develop mathematical thinking. Here, we present the first lesson in a teaching experiment,
where students used Scratch to draw a square.

Literature Review
Scratch is a visual programming language developed by the Lifelong Kindergarten

group at MIT Media Labs (Resnick et al., 2009). Designed for students eight years of age
and older, Scratch promotes creative thinking, reasoning, and innovation for those who
engage with the program (Resnick et al., 2009). The rich digital environment utilises
building block command structures to manipulate graphics, audio and video functions
(Calder, 2012). The building block commands are a form of simplified syntax, so students
are not required to type the code themselves; rather, they drag and drop the interlocking
blocks of symbolic code together to create chains of code. There are 10 categories of
building block command structures action, and each is represented by a specific colour.
Examples of these colour categories include: motion blocks (blue); logic/control blocks
(gold); and, data blocks (orange) (Francis, Khan, & Davis, 2016). Each coding block

within a category has text and symbolic commands to assist the user to select the
appropriate code for the action that they would like to undertake. Similar to the LOGO
turtle (Papert, 1980), the interface enables a cat to move on a two-dimensional screen.
Figure 1 presents the Scratch interface with an example of code for drawing a hexagon.

Figure 1. Scratch interface.

Studies Focusing on Coding
Research indicates that computer programming (henceforth coding) provides an

opportunity for developing students’ cognition and mathematical knowledge (Papert,
1980). Noss and Hoyles (1996) state that “writing a computer program provides a broad
canvas on which the learner can sketch half-understood ideas, and assemble on the screen a
semi-concrete image of the mathematical structures he or she is building intellectually” (p.
55). Research into the teaching and learning of mathematics through coding and
programmable robots, including the use of LOGO (Clements, Battista, & Sarama, 2001)
and Beebots (Highfield, 2010), have indicated that programmable robots support students
in exploring problem solving, measurement, geometry and spatial concepts (Savard &
Highfield, 2015). In addition, findings from quantitative studies have revealed that there is
a correlation between computer coding using Scratch and mathematics test grades for Year
5 students (Lewis & Shah, 2012). With the exception of research conducted using LOGO,
much of this research is in its infancy. Many studies examined the use of Scratch in middle
school but few examined the use of Scratch in lower primary years. Finally, Benton,
Hoyles, Kalas, and Noss (2017) stress that much of the past research into the impact of
coding on students’ mathematics acquisition is inconclusive; and, due to the diversity of
adopted research paradigms across these studies, it is difficult to compare the results.

During the period 1970-2000, there were pockets of enthusiasm regarding the teaching
of coding (e.g., LOGO and BASIC); however, there were several factors hindering its
wider application: (a) many students had difficulty mastering the syntax of the program,
(b) programing had little connection to young people’s interests (e.g., generating lists of
prime numbers), and (c) coding was introduced when there were few experts who could
provide the students guidance (Resnick et al., 2009). It could be argued that the last point
still resonates in the current educational climate. Many generalist primary school teachers
are underprepared to teach coding and therefore will likely have difficulty in establishing
links between coding and the teaching and learning of mathematics (Benton et al., 2017).
The underlying mathematics that students engage in when coding can be unseen by

teachers who often focus on the use of the tool (visual coding program or robots) rather
than the mathematics within the tasks (Savard & Highfield, 2015). Few studies focus on
the classroom implementation of coding and the curriculum (Lye & Koh, 2014). Coding
appears in the Australian Curriculum areas of Mathematics and Technology (Australian
Curriculum, Assessment and Reporting Authority [ACARA], 2016a, 2016b). The
relationship between these documents is important to teachers who use the curriculum to
plan, teach and evaluate student learning. Making the mathematics in coding apparent to
teachers in curriculum documents is essential.

Linking Mathematics and Coding in the Australian Curriculum
Coding is explicitly embedded within the Digital Technologies (DT) strand of the

Technology Curriculum and given that this paper concerns coding; we will limit discussion
only to this component. The DT curriculum outlines that students will use “computational
thinking and information systems, to define, design and implement digital solutions”
(ACARA, 2016a). The DT curriculum in primary school is divided into three bands (F-2,
3-4, and 5-6) that are further subdivided into content descriptors under the sub-headings of
Knowledge and Understanding and Processes and Production Skills. When examining the
ways in which the DT curriculum builds opportunity for development of mathematical
thinking, its alignment with the Mathematics curriculum is an important consideration. As
we are solely concerned here with using Scratch with Year 2 students, the relevant Year 2
Mathematics and DT descriptors are displayed in Table 1.
Table 1
Mathematics Curriculum and Digital Technologies Curriculum

Subject Content Description Elaboration
Mathematics
Year 2:
Geometry

Describe and draw two-
dimensional shapes, with
and without digital
technologies
(ACMMG042)

Identify key features of squares,
rectangles, triangles, kites, rhombuses
and circles, such as straight lines or
curved lines, and counting the edges and
corners.

Digital
Technologies
Foundation –
Year 2: Process
and skill
production

Follow, describe and
represent a sequence of
steps and decisions
(algorithms) needed to
solve simple problems
(ACTDIP004)

Experimenting with very simple, step-
by-step procedures to explore
programmable devices, for example
providing instructions to physical or
virtual objects or robotic devices to
move in an intended manner, such as
following a path around the classroom.

The learning sequence in this study was designed to address the content descriptors in

Table 1. The research questions explored in this paper are:
1. In what ways does working with coding contexts such as Scratch provide

opportunity to develop mathematical thinking?
2. How do these opportunities align with the Australian Curriculum content

descriptors for Mathematics and Digital Technologies?

Research Design

Participants
Six classes of Year 2 students (7-8 years old) from two schools located in Brisbane

participated in the study. In total, there were 153 Year 2 students: 74 students from School
A and 79 students from School B. Both schools were matched for socio-demographic
characteristics. Both schools are just above the median for socio-educational advantage
(School A = 1,056; School B = 1,037; ICSEA median value = 1,000).

Methodology: Teaching Experiment
A six-week coding and robotics teaching experiment was conducted with Year 2

students. The aim of the teaching experiment was to explore how students developed
mathematical knowledge and thinking as they participated in coding and robotics lessons.
Teaching experiments were used in this study for the primary purpose of directly
experiencing students’ mathematical learning and reasoning in relation to their
construction of mathematical knowledge (Steffe & Thompson, 2000). One of the
researchers (Author 1), in consultation with the class teacher, assumed the role of teacher
in these experiments at both school sites. The teaching experiment comprised of: (a) pre-
testing, (b) 6 x 45 minute lessons of either coding or robotics lessons (one lesson per week
for six weeks with two groups of 10 students at each school site), and (c) post-testing.

All students participated in pre-testing measures at the commencement of the teaching
experiment to identify their prior patterning knowledge and coding knowledge. As coding
and mathematical patterning are related, it was decided to test the students on these two
constructs. The test data are not the focus of this paper, however, do explain how students
were selected for the study. This was a pen and paper test that focused on patterning (10
items) and coding from Scratch contexts (10 items). All test items were read to the
students, and the test took approximately 30 minutes to complete. The items from these
tests were developed from previously trialled patterning test items (Miller, 2015; Warren &
Cooper, 2008) and then modified for coding contexts. Data from the pre-tests were
analysed to determine a smaller, experimental group of students (n = 40) to participate in
the coding and robotics lessons. Students were selected on their prior knowledge of
patterning and coding (low-mid-high test scores). Four subgroups of students were
identified: low patterning/low coding, low patterning/mid coding, mid patterning/low
coding, and mid patterning/mid coding. No students were classified as high in either
pattering or coding. Each subgroup consisted of 10 students with an even number of male
and female students in each. Students not selected for the study (n = 113 spread over the
six participating classes) stayed with their classroom teacher and participated in normal
class lessons as planned by their teacher for that time. These teachers (n = 6) did not teach
robotics and coding in their classrooms during the experiment. At the conclusion of the six
weeks, post-testing (patterning and coding test) was conducted with all students (n = 153).

The teaching experiment consisted of six lessons, three with a coding focus using
Scratch and three with a robotics focus using LEGO Mindstorm robots. Each lesson
focused on teaching a mathematical concept using coding or robotics (e.g., drawing a
square, drawing spirolaterals, moving a robot along a particular path). In this paper, we
only present findings from the first lesson in the teaching experiment, where students were
required to use the Scratch program to draw a square (See Figure 2). This lesson was
aligned to the Year 2 Mathematics and DT Curriculums (see Table 1).

Figure 2. Drawing a Square task using Scratch with links to mathematics and coding concepts.

Two video cameras were used to collect data during each lesson of each teaching
experiment, with one camera focussed on the researcher and one on a group of students.
These video-recordings were used for in-depth analysis by the authors.

Data Analysis
An iterative approach, using iterative refinement cycles for videotape analyses of

changes in students’ thinking, was adopted to analyse the data from the teaching
experiment lessons (Lesh & Lehrer, 2000). Due to the unique application of mathematics,
coding and robotics, this data-analysis model, utilised in prior studies (Miller, 2015),
comprises two key stages. First, the lesson video-footage was transcribed to capture
students’ verbal responses. These transcriptions were then analysed to consider emerging
mathematical thinking evident during the lessons. Second, the data were analysed to align
the curriculum descriptors with student responses to the coding and robotics lessons.

Findings and Discussion
The findings are presented in two sections. Firstly, the emerging themes of the

students’ response to the “Draw a Square” Task are discussed. Secondly, the alignment of
the task against the Australian Curriculum Mathematics and Digital Technologies
descriptors is reviewed. Each of the 40 students provided a response to the task. After
analysis of the student responses, it was evident that there were five common types of
responses to the “Draw a Square” Task. Table 2 displays the student approaches, the
frequency of the types of responses, and an example of a student’s work fitting this type.
Table 2
Student Response and Explanation of Approach, Frequency of Student Responses, and
Example of Students’ Work
Response and Explanation Frequency Example
I can’t draw a square but I can draw a
hexagon
Student attempted to draw a square but
used 15 degree turns. While this does
not draw a hexagon, the majority of the
Year 2 students articulated they were
creating a hexagon. They clicked on the
code four times to make this shape.

8

Response and Explanation Frequency Example
I can draw stairs: Why is the cat not
turning the right way?
Students did not construct a square as
they alternated the turns to the right and
left.

4

Is this still a square?
Students correctly coded a square but
were unsure whether it was a square or
not because of the orientation.

3

I made a square.
Students were able to write a code to
make the Scratch cat draw a square
parallel to the bottom of the screen.

20

I can see a pattern: move, turn, move,
turn, move, turn….
Students identified that they can see a
repeating pattern and used the repeat
coding block to draw a square.

5

When considering the above responses, in relation to the content requirements of the

Year 2 Mathematics curriculum (see Table 1), it is evident that some students were
working at a higher level than required. There were three key insights from the data that
demonstrated higher levels of mathematical thinking: (a) working with 90 degree turns, (b)
orientation and perspective taking, and (c) deducing a repeating pattern to provide a
generalised code for making a square. When drawing a two-dimensional shape, using a
digital tool such as Scratch, it is conjectured that this provides the opportunity for students
to engage with higher levels of mathematics. This may occur for three reasons: first, as a
consequence of the visual programing language (icons) and representations; second, the
perspective which performing the task requires; and third, using a coding chain that
represents the structure of the mathematical shape the students have drawn.

When using Scratch to draw a square, it appears the language and representations
depicted in the coding blocks require higher levels of mathematical thinking and
knowledge for these young students. For example, Scratch uses measures of degrees for
turns, rather than language such as 1/4 turn. This program appears to offer more
opportunities to explore some aspects of mathematics (e.g., measurement of angles) than
programmable robotics toys, such as the commonly used Beebots, that have an arrow
indicating left or right which results in the Beebot performing a 90 degree turn. When
using Scratch students have to determine the number of degrees themselves in order to
perform an accurate 90 degree turn. Aligning this mathematical thinking to the Year 2
Mathematics curriculum, students are only required to identify the corners of shapes and
use the language of “quarter and half turns”. It is not until students are in Year 5 that they
are required to estimate and measure angles using degrees (ACARA, 2016b). Our initial

supposition is that the representations and language in Scratch supports the development of
higher levels of mathematical thinking for these young students.

Second, the way in which students engage in the task of drawing a square using
Scratch is vastly different to drawing a square on paper using a pencil and ruler. As
students code the Scratch cat to draw a square, they are required to take the perspective of
the cat (i.e., the square will be drawn in the same orientation as the cat is initially facing).
Students who started their cat either facing up or down, or an alternative sideways
orientation other than the cat facing directly left or right of the screen (student’s
perspective while looking at the screen), meant that the square could be drawn from
different initial perspectives and thus end up looking different to the prototypical
depictions of squares (parallel to bottom and sides of the screen). This was evident in the
case where students were unsure if they had still drawn a square for the reasons outlined
above. While they could code a square, their limited mathematical understanding of
“squareness” meant they were unable to reason if their shape was a square or not.

Finally, unlike drawing a square on paper using a pencil and ruler, some students could
see on the screen the “structure”, that is a semi-concrete mathematical structure (Noss &
Hoyles, 1996), of their drawing in the Scratch code. This led to five students, unprompted
by the researcher, identifying units of repeat (e.g., move 100 steps, turn 90 degrees) and
deducing that their code (repeat four times – move 100 steps, turn 90 degrees) would draw
a square. While, students in Year 2 should be able to identify a repeating pattern, this
moves beyond the typical patterns presented to students (e.g., ABAB). This led to students
then deducing a generalisation for the perimeter (e.g., move n length, turn 90 degrees and
repeat four times) of the square and even further to discussions about measuring the
perimeter of squares using the code (e.g., If my square has a length of 10, the total
perimeter will be 40). We suggest that these students were demonstrating, and engaging in,
early algebraic thinking (deducing patterns) and higher levels of measurement (identifying
the perimeter), beyond the current required curriculum standard, such as Year 6 – Continue
and create sequences involving whole numbers, fractions and decimals. Describe the rule
used to create the sequence (ACMNA133) and Year 5 – Calculate perimeter and area of
rectangles using familiar metric units (ACMMG109) (ACARA, 2016b).

Conclusion
The implementation of coding into the lower primary years presents a challenge for

generalist primary school teachers. Commonly, past research in this area has provided
insights into how students in the middle years of schooling work with coding contexts, but
at times the impact on mathematics acquisition for these students are inconclusive (Benton
et al., 2017). This study adds to the current literature by examining the use of Scratch in a
lower primary context, and identifying the types of mathematical thinking these students
engaged with while undertaking the task. Research with primary school students, when
using robotics programs, have identified that young students use problem solving,
measurement, geometry and spatial concepts (Savard & Highfield, 2015), in these
contexts. Our early conjecture is that coding also provides an opportunity to identify and
deduce patterns and therefore is a platform to engage with early algebraic thinking.

With few studies focusing on the classroom and curriculum implementation of coding
(Lye & Koh, 2014), there is a need to examine the relationship between the Mathematics
and Digital Technologies Curricula and coding contexts to maximise learning opportunities
for primary students. As teachers use the curriculum to manage their planning, teaching
and evaluating of student learning, making the mathematics in coding apparent for teachers

within both curriculum documents is essential. Although this is an initial, small-scale study
over a relatively short intervention, it begins to indicate the potential of coding programs
such as Scratch to support students’ mathematical thinking and concept development.

References
Australian Academy of Science. (2016). The mathematical sciences in Australia: A vision for 2025.

Canberra: Author.
Australian Curriculum, Assessment and Reporting Authority. (2016a). The Australian curriculum: Digital

technologies. Canberra: Author.
Australian Curriculum, Assessment and Reporting Authority. (2016b). The Australian curriculum:

Mathematics. Canberra: Author.
Benton, L., Hoyles, C., Kalas, I., & Noss, R. (2017). Bridging primary programming and mathematics: Some

findings of design research in England. Digital Experiences in Mathematics Education.
Calder, N. (2012). The layering of mathematical interpretations through digital media. Educational Studies in

Mathematics, 80(1-2), 269-285.
Clements, D. H., Battista, M. T., & Sarama, J. (2001). Logo and geometry. Journal for Research in

Mathematics Education Monograph. Reston, VA: National Council of Teachers of Mathematics.
Department of the Prime Minister and Cabinet. (2016). National innovation and science agenda report.

Canberra: Commonwealth of Australia.
English, L. D. (2016). STEM education K-12: Perspectives on integration. International Journal of STEM

Education, 3(3). doi:10.1186/s40594-016-0036-1
Francis, K., Khan, S., & Davis, B. (2016). Enactivism, spatial reasoning and coding. Digital Experiences in

Mathematics Education, 2(1), 1-20.
Highfield, K. (2010). Robotic toys as a catalyst for mathematical problem solving. Australian Primary

Mathematics Classroom, 15(2), 22-27.
Larkin, K., & Jorgensen, R. (2016). ‘I hate maths: Why do we need to do maths?’ Using iPad video diaries to

investigate attitudes and emotions towards mathematics in Year 3 and Year 6 students. International
Journal of Science and Mathematics Education, 14(5), 925-944.

Lesh, R., & Lehrer, R. (2000). Iterative refinement cycles for videotape analyses of conceptual change. In R.
Lesh & A. Kelly (Eds.), Research design in mathematics and science education (pp. 665-708). Hillsdale,
NJ: Erlbaum.

Lewis, C. M., & Shah, N. (2012). Building upon and enriching Grade 4 mathematics standards with
programming curriculum. In Proceedings of the 43rd Association of Computing Machinery technical
symposium on Computer Science Education (pp. 57-62). Raleigh, NC: ACM.

Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of computational thinking through
programming: What is next for K-12? Computers in Human Behavior, 41, 51-61.

Miller, J. (2015). Young Indigenous students’ engagement with growing pattern tasks: A semiotic
perspective. In M. Marshman, V. Geiger, & A. Bennison (Eds.), Proceedings of the 38th Annual
Conference of the Mathematics Education Research Group of Australasia (pp. 421-428). Sunshine
Coast, QLD: MERGA.

Noss, R., & Hoyles, C. (1996). Windows on mathematical meanings: Learning cultures and computers.
London, England: Kluwer.

Office of Chief Scientist. (2014). STEM: Australia’s future. Canberra: Author.
Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. New York, NY: Basic Books.
Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K... Kafai, Y. (2009).

Scratch: Programming for all. Communications of the ACM, 52(11), 60-67.
Savard, A., & Highfield, K. (2015). Teachers’ talk about robotics: Where is the mathematics? In M.

Marshman, V. Geiger, & A. Bennison (Eds.), Proceedings of the 38th Annual Conference of the
Mathematics Education Research Group of Australasia (pp. 540–546). Sunshine Coast, QLD: MERGA.

Steffe, L. P., & Thompson, P. W. (2000). Teaching experiment methodology: Underlying principles and
essential elements. In R. Lesh & A. E. Kelly (Eds.), Research design in mathematics and science
education (pp. 267–307). Hillsdale, NJ: Lawrence Erlbaum Associates.

Warren, E., & Cooper, T. (2008). Patterns that support early algebraic thinking in the elementary school. In
C. Greenes & R. Rubenstein (Eds.), Algebra and algebraic thinking in school mathematics: Seventieth
Yearbook (pp. 113–126). Reston, VA: National Council of Teachers of Mathematics.

