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Visual and analytic strategies are features of students’ schemes for spatial tasks. The strategies 
used by six students to anticipate the folding of nets were investigated. Evidence suggested that 
visual and analytic strategies were strongly connected in competent performance. 

Nets as an Opportunity for Spatial Reasoning 
The importance of spatial reasoning to student success in mathematics and other STEM 

related fields is accepted (Okamoto, Kotsopoulos, McGarvey, & Hallowell, 2015; Sinclair & 
Bruce, 2015; Tosto et al., 2014). Given such significance some researchers lament the lack of 
focus on spatial reasoning globally, particularly in geometry curricula (Kell & Lubinski, 2013; 
Presmeg, 2008). Two other compelling reasons to promote spatial reasoning are the increased 
use of graphical representation to convey information across disciplinary fields (Lowrie, 
Diezmann, & Logan, 2012) and power of visual representations as tools for ‘amplifying 
cognition’ (Card & MacKinlay, 1999).  One opportunity for students to exercise their spatial 
abilities is through working with nets, the 2-dimensional patterns that fold to form 3-
dimensional solids (Cohen, 2003). The following content descriptor from Year 5 of the 
Australian Curriculum (ACARA, n.d.) refers specifically to nets as a form of representation: 

Connect three dimensional objects with their nets and other two-dimensional representations 
(ACMMG111) 

This paper builds on our previous work which investigated students’ schemes for 
anticipating whether given nets would or would not fold to form a target solid (Knight & 
Wright, 2014).  Schemes are defined as observable action structures whereby an individual 
connects situations, actions, and anticipated results (Von Glasersfeld, 1989, 1998). 
Enhancement of schemes comes from anticipatory thought as well as physical enactment (Tzur 
et al., 2013). One focus for investigating students’ schemes was their use of visual and analytic 
strategies. 

Visual and Analytic Strategies 
An established lens for viewing the strategies used by students on spatial tasks is to 

characterise those strategies as visual or analytic (Presmeg, 1986). Ramful, Ho, & Lowrie 
(2015) describe a visual strategy as one in which the student uses a visual image of an object. 
This definition is honest to many definitions of visualisation as mental transformation of 
images without a change in perspective (Hegarty & Waller, 2004). In the case of visualising if 
a net will work a student who imagines the physical folding of shapes is using a visual strategy. 
An analytic strategy references the properties of the geometric object, as might be evidenced 
if a student recognises that adjacent sides in a net must form an edge of the target solid or that 
adjacent faces of a cube must be orthogonal. These kinds of strategies are labelled analytic 
because they necessitate the dis-embedding of component parts from the whole and thinking 
with those elements (Owens, 2015). The acts of reconfiguring the whole and testing for validity 
also require other high order thought processes such as synthesis and evaluation.   

The demarcation between visual and analytic strategies is far from clear. Presmeg (1992) 
described rationality and visualisation as ‘intertwined’ while Zazkis, Dubinsky, and 
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Dautermann (1996) proposed the VA model. In their model visualisation (V) and analysis (A) 
were connected through successive bootstrapping. Each act of visualisation was reflected on 
analytically resulting in new ways of seeing that informed further visualisation, and so forth. 
Arcavi (2003, p. 230) illustrated by examples that visualisation helps us to organise data in 
useful structures but “we see what we know”. The view of symbiotic interaction between 
strategies aligns with Duval’s seminal work on semiotic systems for mathematics (Duval, 1999, 
2006). According to Duval mathematics is unique in that access to mathematical objects is 
through working with and connecting among representations. Nets are 2-Dimensional 
representations of 3-dimensional objects so much information about the object is not conveyed 
in single image. So acts of visualisation must be coordinated analytically with the mathematical 
objects they represent for the learner to gain ‘amplified cognition’ about the properties of that 
object. Meissner (2001) proposed that nets are procepts, an encapsulation of process 
(folding/unfolding) and anticipated result (properties of the target solid) embodied in symbolic 
form. Of interest in our work was how discrete visual and analytic strategies were identifiable 
in the schemes of students, and the relationships, if any, that existed between these strategies.  

Method 
Two interview protocols were developed, one each for the cube and square based pyramid. 

To find some information about their beginning concept images students were asked, “Do you 
know what a cube/pyramid is? What can you tell me about it?” A model of each solid made 
from polydrons™ was available, only if needed, to prompt the student. Each protocol had four 
nets shown individually on A5 sized cards (see Fig. 1). For each card students were asked, 
“Does this net fold to make a cube/pyramid?” After making a prediction the student was asked 
to “Explain how you know the net will/will not work.” Letters were used to label the faces in 
the net based on previous experience of students using ambiguous pronouns to refer to these 
features in their explanations. If a student claimed that a net would not work they were asked, 
“What could be changed so the net would work?” After making their predictions for all four 
nets students were given flat nets made of polydrons™ to check by folding.  

 
 

 
 

 
 

 
 

 
 

Figure 1: Nets for pyramid and cube  

All the interviews were videoed. The interviewer completed a standardised recording sheet 
at the time. Without reference to the previous record the interviewer completed a new recording 
sheet from the video record to check for consistency. A research assistant also coded the video 
interviews independently to check for consistency. Thirty-six Year 6 students from an inner 
city Catholic school in central Melbourne were interviewed.  The group made up all of the 
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students in two classes within the school. In this paper we report in-depth on the strategies used 
by a sample of six students in their first interview. The sample group was created to achieve a 
range in the target solid used, gender,  languages spoken at home (a measure of ethnicity), age, 
and raw score on NAPLAN Mathematics Year 5, a measure of global mathematics 
achievement (ACARA, 2013). Table 1 gives the composition of the sample group. 
Table 1  

Composition of sample group 
Name Net Gender Languages 

spoken at home 
Age NAPLAN raw 

score/40 
Beth pyramid female English, Tigray 11 years 11 months 21 

Oprah pyramid female English 11 years 1 month 31 
Charlene cube female English 11 years 3 months 23 

Elijah Cube male English, Italian 11 years 9 months 24 
Geoff pyramid male English 11 years 11 months 34 
Jim Cube male English, Italian 11 years 7 months 31 

Results 
Kozhevinikov, Kosslyn, and Shephard’s (2005) classification of students as either object 

or spatial visualisers suggested that marked differences in descriptions of the target solid 
might predict success in the folding tasks. However, this was not the case. Jim, the poorest 
performer described a cube as having six square sides (altered to faces) and cited die and 
boxes as examples. His response had both object and spatial elements. Geoff, the most fluent 
performer, said of a square-based pyramid, “It stands up like most other 3D shapes. It’s got 
triangles on the sides. It can be a square based pyramid. It has a point at the top.” Similarly, 
his response contains reference to the objects appearance, “standing up”, and to spatial 
properties, faces and an apex. 

Assigning correctness to a particular student’s response was complicated by the changes 
of mind, particularly by Charlotte and Beth, and operations that occurred during explanation. 
It was often the classic case of students’ understanding not remaining still enough to assess it. 
For reporting the student’s final decision was used though the records of deliberations provided 
rich data for investigating the interaction between visual and analytic strategies. Four students, 
Beth, Oprah, Charlene and Geoff correctly predicted all four nets though there were notable 
differences in certitude and reflection they needed to make the predictions. Elijah and Jim 
correctly predicted for two nets and one net respectively. Beth and Jim were credited with 
correct predictions when their explanations contained errors. NAPLAN scores did not associate 
with success on the nets tasks. Jim, a high scorer, did poorly on predicting nets while Charlene 
and Beth, both low scorers, predicted all nets correctly. 

Co-gestures are commonly used by students in working with spatial tasks (Hostetter & 
Alibali, 2007) and are particularly associated with explanation. Three students, Beth, Charlene 
and Jim used gestures in forming their predictions but not consistently for all nets. For example, 
Elijah used finger folding on nets A and D but no gestures for nets B and C. There was no 
evidence of gesturing to predict by the other three students. However, all students used co-
gestures to support their explanation as to why a given net would work or not work. Table 2 
shows the gestures used in their explanations with (×n) used to represent multiple instances. 
Dynamic movements of fingers, palms and eyes signal imaging of movement and are indicative 
of visual strategies. However, these movements also have an analytic component. For example, 
folding of palms to an orthogonal position for a cube or at acute angles for a pyramid indicates 
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a mapping to the relative position of faces. Static gestures were mainly used to either identify 
particular faces or to indicate the positional structure of faces. Positioning of palms in a static 
way to indicate the relative position of faces, orthogonal for a cube and meeting at a vertex for 
a pyramid, indicates a co-ordination between the net, the body as a semiotic register, and 
student’s concept image for the target solid. 
Table 2  

Gestures used by students to explain their predictions 
Name Static gesture Dynamic gesture 
Beth Finger locating (x4), Palms 

positioning 
Fingers folding (x3), Hands rotating,  
Head movement, Rotating net card 

Oprah Finger locating (x 4) Fingers folding (x 2), Hands rotating, 
Palms rotating 

Charlene Finger locating (x4), Palms 
positioning 

Fingers folding (x4), Hands rotating,  
Palms folding (x2) 

Elijah Finger locating (x4), Hands closing Fingers folding (x4), Palms folding, 
Hands rotating  

Geoff Finger locating (x2), Palms 
positioning (x2) 

Fingers folding, Palms folding (x4), 
Eye movement 

Jim Finger pointing (x4) Fingers folding (x4), Palms folding 
The incorrect predictions of Jim and Elijah illustrated some factors that impact on students’ 

ability to correctly predict folding a net. Below Jim described why Net B for the cube would 
not work. The left figure shows his first attempt, the right figure shows his second. During his 
reflection Jim changed the base from C to D. While he controlled a single orthogonal fold (F) 
and connected it to faces of his concept image this change of base required control of two 
consecutive orthogonal folds (L composite of FCD). He incorrectly believed F would form the 
top. Furthermore, Jim could not predict the location of A and B after folding. 
 

 

 

 

 

 
 

 
Figure 2. Jim’s prediction for Net B 

J: I don’t think so. The way I was doing it I would put F folding up, facing me. C would be…(uncertain 
pause). D’s the base, bottom. Then C would fold to…um...D. F would go on top. E would go on one side 

I: Why won’t it work? 

J: If I think F goes on the top I don’t know where these shapes would go (A and B), all over the place 

Anticipating the result of folding was not a purely visual process as it required a mapping 
of shapes to corresponding positions of faces for the solid and positional relationships between 
those faces. Like Jim’s “All over the place.” Elijah used a statement of dislocation to describe 
why Net D for the cube would not work, “But A, B, and C would just be left. You can’t really 
do anything.” Elijah’s discourse was that action was impossible because there was no way that 
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A, B and C could form the missing faces of the cube. His affordance for inaction shows no 
effort to co-ordinated folding, a visual strategy, with the positioning of faces, an analytic 
strategy. 

Assigning the base was the first spatial to analytic connection made by students and 
affected the complexity of consequential folds. Strategic choice of base is known to influence 
memory demands and the success of students on net folding tasks (Owens, 2015). Elijah 
consistently made poor choices for the base square which necessitated complex folding 
sequences that he was unable to coordinate. For Net B he assigned B to be the base when D 
was an easier choice (see Fig. 3). He predicted that C and E would be parallel yet his statement 
that square F will “just go over” states the impossibility condition that F cannot form the top 
of the cube. He showed a chain of visual to analytic connections that ended when he could no 
longer coordinate the final connection he needed. 

E: I did two ways. First a made B the base, flipped A up to be one of the sides then kinda flipped these 
four (CDEF) up so D would be another side. These two (C and E) will go into B (uses palms to show 
parallel faces). You need a lid. The F will just go over. 

 
 

 
 

 
 

 
Figure 3. Elijah’s choice of base and consequential folds 

Statements of impossibility conditions were common in situations where students believed, 
correctly or incorrectly that a net would not work and took two forms, displacement of a face 
or faces, and overlaps of faces. Impossibility conditions might be considered analytical 
strategies. However, the rationale behind the statements revealed more than the statements 
themselves. 

Beth, for whom English was a second language, struggled to express her thoughts. She 
requested and was given access to the polydron™ model of a pyramid. With the concrete model 
she enacted mappings of shapes to faces in a way that was not visible with the other students 
who carried out mappings to their concept image. She predicted that Net C was impossible 
owing to A needing to be in a different location (see Fig. 4). Her suggestion was partially 
correct in that a triangle was needed to connect to the right edge of C but she neglected the 
overlap of B and E and the missing face that moving A would create. 

 
 

 
 

 
Figure 4. Beth’s impossibility condition 

Beth’s statement that A needed relocating signalled an analytical strategy. If the square was 
sensibly assigned as the base it needed to be in contact with four triangles, one on each side. 
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However, she treated that property in isolation and did not check her assertion visually by 
imaging a folding process. 

B: No I don’t think this will work (rotates card back to original position). This square is stuck. You need 
four sides (pointing with finger gestures). The A and B go here but the A needs to be there (refer to 
diagram). 

Oprah who was highly proficient on all four tasks also dismissed Net C for two reasons. 
While she used the same ‘surround the square base’ property as Beth, Olivia was able to 
mentally enact folding the net to establish missing and overlapping faces. 

O:  No. It won’t. Because there’s nothing to ‘do’ this side (pointing to right side of square) 

I: Is there another reason? 

O: And if you fold it the E and B will be together 

Further evidence of the rich, iterative interplay between visual and analytic strategies was 
provided in situations of prolonged reflection. For example, Charlene who was finally 
successful on predicting all four nets, changed her mind several times (see Fig. 5). The 
interview showed her mapping between the result of folding actions and properties of her 
concept image for a cube, namely faces and their relative location. 

 

 
 

 
 

 
 

Figure 5. Charlene’s folds for Net B 

C: No. Because…wait let me think more. I say no because the F there can’t do anything because they (C 
and E) fold up…and then, but it can!…I am so sorry. That (F) can fold around there because the C will 
be up there (Using palms to locate faces). 

I: And you’re saying that this (F) can fold around to be here (pointing) but what happens to these ones? 

C: No it can’t, Sorry. Unless you glue the A on top of the F. 

I: As it is. If you were to cut it out, fold it up… 

C: Then it wouldn’t work because that there’s (A) extra there. If A wasn’t there it could fold up like that 
(using fingers to describe folding movements forming all faces but the top). Oh…Oh my God, it will 
work because A will become the top. 

Charlotte’s mind shifts contrasted with Geoff’s responses that were fluent and confident. 
Geoff described Net B for a pyramid as “just like the other one (Net A)”. He indicated that the 
location of triangle E was the only change and its new position “will still meet (sic)” the apex. 
There was recognition of isomorphism of structure in the two nets, a strongly analytic strategy. 
Geoff’s description for Net D sounded like a visual enactment of the folding process. However, 
his fluency was founded in a trust that composites of shapes mapped to organised structures of 
faces for a pyramid. In particular, he knew that the ‘boot’ composite of B, C, D and E wrapped 
to form the base and three triangular faces of the pyramid.  He possessed a trusted connection 
between action on the composite of shapes and the anticipated result of that action. 
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G: I reckon it would because A can come up and match the middle and C can come up. And these two 
(pointing to D and E) will be over. And D can go there (pointing) and E can wrap all the way around and 
come up as well. 

There were several other examples of students development of trusted composites, 
sometimes after folding the polydron™ nets to check their predictions. For example, Ethan 
learned that an L shaped collection of squares formed half a cube. He said, “I didn’t really think 
you could twist it like that.” Composite thinking serves to reduce load on working memory. 

Discussion 
It is possible to discriminate students’ strategies that are visual from those that are analytic. 

However, productive approaches used by these students suggested strong cycles of connection 
between visualising folding of nets and anticipating the structures formed. These structures 
were mapped analytically to concept images for the target solid. Cycles of visualisation and 
analysis were observed supporting the VA model of Zazkis, Dubinsky, and Dautermann 
(1996). Duval’s (1999, 2006) theory of semiotic registers explains how ‘amplified cognition’ 
about the properties of target solids occurs by students connecting within and among 
representational registers.  

This work suggests possibilities for further research. A larger sample of students might 
establish differences in schemes between competent and less competent predictors that, in turn, 
would inform ways to focus students’ attention. Further work might also establish what features 
of nets in combination with students’ selection of strategies contribute to task difficulty.  The 
tasks we used placed students in receptive mode and more research is needed on students’ 
productive mode with nets, as used in Piaget and Inhelder’s seminal work (1956). 

Instruction for anticipating nets should support students in connecting their visual strategies 
with properties of the target solid, the concept image. Further pedagogical research is needed 
to find approaches that support students to make these connections. These data suggest that 
successful teaching must involve students in cycles of mapping between action and concept 
through anticipation, and thinking with anticipated results to establish properties. Physical 
experience of folding nets alone, while beneficial, is unlikely by itself to promote strong spatial 
reasoning. 
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