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This paper presents a hypothesised learning trajectory for a Year 3 Indigenous student en route 
to generalising growing patterns. The trajectory emerged from data collected across a teaching 
experiment (students n=18; including a pre-test and three 45-minute mathematics lessons) and 
clinical interviews (n=3). A case study of one student is presented as a representative of high 
achieving students’ progression and shifts in learning. Results suggest that students are capable 
of functional thinking, which contradicts the notion of young students can only engage with 
recursive pattern sequences. In addition, particular teaching actions assisted in promoting shifts 
in developing students’ capability to generalise growing patterns. 

Early algebra is considered crucial to students’ mathematical success, and therefore has 
been at the forefront of both national and international initiatives over the past decade (e.g. 
Australian Curriculum, Assessment and Reporting Authority, 2012; National Council of 
Teachers of Mathematics, 2006). Furthermore, algebra has been labelled as a mathematics 
gatekeeper for all students, having the potential to provide both economic opportunity and 
equitable citizenship (Satz, 2007). As algebra provides a pathway for potential equality and 
opportunity, and a reduction in exacerbated inequalities between ethnic and socioeconomic 
groups (Greenes, 2008), it is important to consider the significance of early algebra for young 
students in marginalised communities (Gonzalez, 2009). Within the Australian context, 
developing an understanding as how to best support the teaching and learning of early algebra 
for young Indigenous students is imperative.  

Studies with non-Indigenous primary students have demonstrated that engaging with early 
algebra assists these students to develop a deeper understanding of mathematical structures 
that can lead to mathematical generalisations (Radford, 2010). One particular path for 
developing this thinking is through students working with growing patterns (Warren, 2005). 
There are two ways students may generalise growing pattern structures; recursive 
generalisations and functional generalisations (Blanton, Brizuela, Gardiner, Sawrey & 
Newman-Owens, 2015). When students display recursive thinking they are considering the 
relationship between successive terms in the pattern. Whereas when students exhibit 
functional thinking they are considering the relationship between both variables (pattern and 
the position; Warren, 2005). Studies have indicated that young students are capable of 
engaging in functional thinking (Cooper & Warren, 2011; Moss, et al., 2008), however there 
is limited understanding of how young students develop functional thinking. Recently, 
Blanton and colleagues (2015) have developed a learning trajectory to demonstrate one 
particular path 6-year old students may take when generalising functional relationships using 
the context of function tables. Despite this new development, important questions remain 
regarding, (a) if this trajectory is reflective of how young Indigenous students reason 
functions from growing pattern contexts, and (b) what teaching and learning actions promote 
shifts in students’ thinking as they move towards algebraic generalisations (Blanton, et al., 
2015). The aim of this paper is to examine an in-depth case study of one student’s shift from 
recursive thinking to functional thinking and, highlight the teaching actions that supported this 
student’s development of more sophisticated generalisations.  

2016. In White, B., Chinnappan, M. & Trenholm, S. (Eds.). Opening up mathematics education research (Proceedings of the 
39th annual conference of the Mathematics Education Research Group of Australasia), pp. 471–478. Adelaide: MERGA.

471



Literature 
The ability to generalise mathematical structures beyond the initial learning experience 

has been highlighted as an important components of mathematics (Cooper & Warren, 2008). 
Consequently, it can be understood why generalisation has been described as the heart or the 
heartbeat of mathematical thinking (Mason, 1996). It can be implied that the ability to 
generalise is intrinsic to our success in mathematics, because it enhances our capability to 
apply mathematical concepts across mathematical tasks (Mason, 1996). Recently, there has 
been a growing body of literature exploring mathematical generalisation with younger 
students. Results of this research have shown that young students are capable of generalising 
mathematical structure across a range of contexts (Cooper & Warren, 2008). These contexts 
include generalising relationships between numbers and pattern rules, and generalising from 
particular examples in real-life situations to abstract representations (Blanton & Kaput, 2011; 
Cooper & Warren, 2011). 

Current research has used visual geometric growing patterns as a way for students to 
generalise functional relationships (Cooper & Warren, 2011; Radford, 2010; Rivera & 
Becker, 2011). However, past research indicates that common issues arise when students 
generalise, and these are potentially due to the way the pattern tasks are presented and taught 
to students (Moss & Beatty, 2006). Growing patterns are often presented that limit students’ 
awareness and accessibility to generalise the multiplicative pattern structures (Dörfler, 2008). 
Thus often leading to students articulating recursive thinking to express their generalisations 
rather than generalising the functional relationship. Thus, often students need to be scaffolded 
in order to recognise the pattern term number (independent variable) in geometric patterns 
(Moss et al, 2008). To overcome such an issue, independent and dependent variables need to 
be explicitly represented (Moss et al, 2008). As it is when students begin to co-ordinate 
between the variables that they shift from recursive thinking to functional thinking and thus 
form functional generalisations (Cooper & Warren, 2008). 

Different ways to generalise have been identified in a number of research studies. Lannin 
(2005), for example, distinguishes between two types of generalisation: recursive and explicit. 
Harel and Tall (1991) theorised that there are three types of generalisation: expansive; 
reconstructive; and disjunctive and Radford’s (2010) introduces the notion of “layers of 
generality”: factual, contextual and symbolic generalisations. While there is agreement that 
students move through different stages during the generalisation process, how one generalises, 
and the processes that assist students to move through these stages, remains a largely 
unexplored realm. 

Theoretical Framework 
Two theoretical frameworks underpin the study, Indigenous research perspectives (Denzin 

& Lincoln, 2008) and learning trajectories (Clements & Sarama, 2004). In researching the 
cognitive interactions with young Indigenous students, it is important to acknowledge the 
potential for unique cultural variations with regard to how the outward displays of thought 
processes may be expressed. Thus, a decolonized approach has been adopted for this study 
with a focus on valuing, reclaiming, and having a foreground for Indigenous voices (Denzin 
& Lincoln, 2008). In essence, every attempt was made to ensure that the findings of this study 
best reflect how Indigenous students construct knowledge and engage in the learning process. 

In order to understand the progression of students learning, a learning trajectory is adopted 
as the second theoretical framework for the study. The learning trajectory used to analyse the 
data from this study emerges from Blanton et al.’s work (2015) which reported the ‘the levels 
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of sophistication in children’s thinking about generalising functional relationships’ (p. 244) 
using function tables. The following presents the learning trajectory that comprises eight 
levels of generalisation.  

Pre-structural: “Students do not recognise that mathematical quantities could be related or notice that 
they were related by an underlying quantitative structure, nor did they understand how to articulate this 
structure” (p.525).   

Recursive-Particular: “Students conceptualise a recursive pattern as a sequence of particular 
instances… and has not yet composed the underlying recursive pattern as a generalisation over a class 
of instances” (e.g. particular sequence 2, 4, 6, 8 but cannot generalise the process of adding two every 
time; p.527).  

Recursive-General: “Students conceptualise a recursive pattern as a generalised rule between arbitrary 
successive values without referent to particular instances” (e.g. you add two every time; p. 529). 

Functional-Particular: “Students conceptualise a functional relationship as a set of particular 
relationships between specific corresponding values. That is, students could describe a relationship 
within the specific but not generalised functional relationship over a class of instances” (e.g. 3 plus one 
more equals 4 (specific instance) but cannot generalise across instances; p.530). 

Primitive Functional-General: “Students conceptualise a general relationship between quantities across 
a set of cases although their representations had primitive characteristics” (e.g. “they are all the same” – 
rather than the number of dogs is the same as the number of noses, or D=N; p. 532).  

Emergent Functional-General: “Students reflect the emergence of key attributes of a generalised 
functional relationship, although their representation of the relationship was incomplete” (e.g. add the 
number of cares to itself (A+A) with no mention of the dependent variable; p. 533-535). 

Condensed Function-General: “Students conceptualise function as a generalised relationship between 
two arbitrary and explicitly noted quantities” (e.g. Whatever the number, how many stops it made, if 
you doubled it, that’s how many cars it would have -  R+R=V; p. 535,6). 

Function as Object: “Students perceived boundaries concerning the generality of the relationship and 
conceptualise the relationship structurally, as a new object in its own right on which new processes 
could be performed. (e.g. adding a constant value to a previously generalised structure; p. 537,8).  

Research Design 
This study was conducted with Year 2 and 3 students in a single multi-age classroom (7-9 

year olds) from an urban Indigenous school in North Queensland. In total, 18 students, 2 
Indigenous education officers, and 1 “researcher as teacher” participated in the study. The 
class was purposively selected for two reasons; (a) a relationship had been formed with the 
school prior to the study, an important aspect of Indigenous research perspectives; and, (b) 
students had no previous formal lessons in growing patterns.  

Data Collection 

Teaching experiments (Confrey & Lachance, 2000) and clinical interviews (Opper, 1977) 
were employed in the study to explore the teaching and learning process as students 
developed their thinking about generalising functional relationships. Each teaching 
experiment consisted of (a) a pre-test to ascertain what the students knew prior to the lessons; 
(b) three 40-minute video-recorded mathematics lesson taught by the researcher (2 video-
recordings – one focusing on the students and the other on the researcher), and (c) audio-taped 
interviews with the Indigenous education officers. At the conclusion of the teaching 
experiment, one-on-one Piagetian clinical interviews were conducted with students (n=3). The 
interviews were also video-recorded and provided opportunity to further explore students’ 
mathematical thinking. This paper reports data from a single case study (S1 – Aboriginal girl), 
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who participated in the entire teaching experiment. This student was selected as she 
represented a high-achiever in mathematics, as identified by the classroom teacher and 
Indigenous education officer.  

Data Analysis 

Data analysis was concurrent with the data collection and informed each stage of the 
research design. The pre-test analysis determined students’ prior knowledge of growing 
patterns in terms of both their capability to answer the question, and also the ways in which 
students responded to tasks. Analysis of the pre-test informed the lessons that occurred in the 
first teaching experiment. Two phases of analysis occurred during the lessons: ongoing and 
in-depth analysis. At the conclusion of each lesson, analysis occurred to inform the teaching 
for the following day. Video-data and field notes were compiled and peer-debriefing occurred 
between the researcher, supervisor, teacher, and Indigenous education officer to determine 
conjectures for the following lesson.  

After the pre-test, mathematics lessons, and clinical interviews, an in-depth analysis was 
conducted to capture students’ verbal responses. Member checks occurred through the 
interviews to determine that the researcher had correctly interpreted students’ responses. 
These responses were transcribed from the video-recordings and coded using the 8 levels of 
students’ thinking about generalisation as described by Blanton and colleagues (2015). Once, 
the student data had been coded for these levels of thinking, the data were re-analysed to 
determine the teaching and learning interactions that occurred between each level. To ensure 
that all data represented students’ cultural interactions the Indigenous education officers 
analysed the data paying attention to the cultural nuances. Audio-recorded discussions were 
transcribed and aligned with the student transcriptions.  

Findings  
The following presents findings, of an in-depth case study (S1), according to the 

chronological order in which the data were collected. Table 1 presents the types of functional 
relationships explored for each growing pattern given to students in the pre-test, lessons and 
interview.  

Table 1.  
Pattern Name and Functional Relationship Explored in Each Task 

 Pattern Name Functional relationship explored  
Pre-test Possum pattern  

 
The number of possum tails and the number of possum eyes.  
(y = 2x) 

Lesson 1 Butterfly pattern  
 

The number of butterflies and the number of butterfly wings.  
(y = 4x) 

Lesson 2 Feet pattern 
 

The number of people and the number of feet. 
(y = 2x) 

Lesson 3 Kangaroo pattern  
 

The number of kangaroo tails and the number of kangaroo ears. 
(y = 2x) 

Interview 
Task 1 

Crocodile pattern  
 

The number of crocodile tails and the number of crocodile legs.  
(y = 4x) 

Interview 
Task 2 

Classroom pattern  
 

The year level (position card) and the number of student tables 
(square tiles; y = 3x) 

Interview 
Task 3 

Classroom and Teacher 
pattern  

The year level (position card) and the number of student tables and 
one teacher (square tiles; y = 3x +1). 
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During each lesson and interview task students were asked to: (a) continue the pattern 
with hands-on materials attending to the structure of the pattern, (b) predict and create the 
next/previous position of the pattern, (c) predict the quasi-variable position, (d) identify the 
pattern rule, and (e) generalise using alphanumeric notation. At the completion of each task 
the generalisation that S1 proffered was coded according to Blanton et al’s 8 levels of 
generalisation. Figure 1 illustrates S1’s progression of thinking and aligns the levels of 
generalisations presented in the theoretical framework (Blanton et. al., 2015). 

 
Levels of Generalisation Student 1 

8. Function as an object        
7. Condensed Functional-General        
6. Emergent Functional-General        
5. Primitive Functional-General        
4. Functional Particular        

3. Recursive-General        

2. Recursive-Particular        
1. Pre-structural        
 PT L1 L2 L3 IT1 IT2 IT3 
NB: PT=Pre-test; L1 = Lesson 1; L2 = Lesson 2; L3= Lesson 3; IT1 = Interview task 1; IT2 = Interview Task 2; IT3 = Interview Task 3. 
 

Figure 1. Progression of thinking demonstrated by S1 across teaching experiment 1. 

As shown in Figure 1, as the lessons and interviews progressed S1’s ability to generalise 
became more and more sophisticated. To further illustrate the shifts in S1’s thinking the 
following data are presented with excerpts from the interview transcripts. Teaching actions 
that assisted S1 to shift her thinking are underlined throughout the text.  

Recursive General (Pre-test): S1 predicted that for 10 possum tails there would be 20 
eyes. When asked, “how would you work it out for any number of possum eyes?” S1’s 
response was “I can count in twos”.  

Recursive Particular (Lesson 1): S1 expressed that on day five there were five butterflies 
in her garden with 20 butterfly wings. However, S1 needed to count the butterfly wings each 
time and only discussed this pattern in particular instances. S1 had difficulty describing the 
multiplicative structure (“fourness”) of the pattern.  

Recursive General (Lesson 2): S1 predicted how many people there were if 20 feet were 
on the ladder (10 people; Inverse function). When asked to explain how she arrived at her 
answer, S1 responded, “Counted in two’s till I got to ten people.” S1 was then asked, “What 
would you do for 60 feet?”, S1 responded, “Count forwards two, four, six, eight, ten.... 22.”). 
This response by S1 suggests that she was attending to only one variable, and therefore only 
the recursive structure of the pattern (plus two each time).  

Condensed Functional-General (Lesson 3): S1 attended to both variables when working 
with the kangaroo pattern. She was able to express further predictions of the pattern using 
both the tail and the ears to communicate her understanding. This task was designed so that 
both variables were explicit and embedded in the kangaroo pattern. S1 explained to the class 
that if she had 1 million kangaroo tails she needed to “double the number of tails to work out 
how many ears” there were.  

Recursive General to Functional Particular (Interview Task 1): S1 was using an additive 
process to determine how many crocodile feet were in each term of the pattern (‘growing “in 
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fours”). S1’s attention was drawn to the structure of the pattern, this included explicitly 
introducing the mathematical language in conjunction with gestures from the researcher 
(pointing between the tails and the feet). This was intentional and framed the structure to 
assist S1 to move beyond the additive rule. Once the language was grasped by S1, and the 
connection was made between the mathematical language and the structure, she was asked to 
determine what the rule would be if she had any number of crocodiles. S1 responded, “Times 
four”. 

Functional Particular to Emergent Functional-General (Interview Task 2): S1 was asked 
what the classroom pattern would look like at Grade 20 (response - 20 rows of three) and 
Grade 1 million (response - 1 million rows of three). S1 applied the structure of the pattern to 
predict quasi-variables (Cooper & Warren 2011). At this point in the interview the researcher 
unpacked the mathematical language of multiplication, S1 selected “times” and trialled it for 
each of the pattern positions presented (e.g. Four rows of three is twelve, Four times three is 
twelve). S1 was then asked to generalise the classroom pattern, “What if I had a class called 
grade n? What would I have to do?”. S1, replied “Times it by three”.  

Primitive Functional-General to Emergent Functional-General to Condensed Functional-

General (Interview Task 3): S1 was then presented with the classroom and teacher pattern that 
incorporated a variable with a constant (+1), modelled as “the teacher’s desk” (orange tile). 
S1’s trialled new rules (e.g. multiply by four), and was unsure how to explain the new teacher 
desk. The researcher prompted her to think about the terms used in mathematics when we join 
two things together. S1 was then able to articulate that she was adding the teacher on each 
time. She quickly moved to being able to provide a quasi generalisation and the pattern rule 
for any number. S1 was asked “What do you think our new rule might be? S1 respond, 
“Times three plus one”. S1 rapidly went on to providing a quasi generalisation (“100 times 
three plus one”), the pattern rule for any class (“any number [gesturing to the position cards] 
times three plus one”), and the pattern rule for n classes (“times three plus one”).  

In summary, particular teaching actions that appeared to make a shift in student thinking 
included making variables explicit, attending to the underlying multiplicative structure and 
mathematical language, and moving students towards quasi-variables.  

Discussion and Conclusion 
Analysis from the data suggests that young Indigenous students are capable of identifying 

and articulating the functional relationship of growing patterns. It appears that the learning 
trajectory presented is similar to findings from studies conducted using function tables 
(Blanton et al., 2015). The case presented demonstrates that S1 was able to identify and 
articulate the general structure of a growing pattern in a number of ways and during the 
teaching experiment she moved in and out of different levels of generalisations. Similar to the 
case presented in Blanton et al.’s study, S1 moves through a comparable learning trajectory.  

Prior research suggests that an understanding of multiplicative thinking is fundamental for 
older students when generalising growing patterns (e.g. Rivera & Becker, 2011), however, 
this study suggests prior understanding of multiplicative thinking is not a prerequisite for 
generalising growing patterns for young students. Though past research suggests that addition 
and multiplication of whole numbers are pre-requisites when generalising linear patterns 
(Rivera & Becker, 2011), this was not necessarily the case for this study with young 
Indigenous students. It is argued that in the early years context, linear growing patterns 
provide a platform for developing an understanding of mathematical operations and 
arithmetic. In the case of the present study, S1 initially used the pattern structure to explore 
additive relationships, but quickly moved to the exploration of multiplicative thinking. 
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Consequently, while having a strong understanding of addition and multiplication would 
assist students to generalise the pattern, and definitely deduce the pattern, it was found not to 
be a necessity for these young Indigenous students. What did appear to assist S1 to engage 
with the pattern and develop generalisations, stemmed from: (a) the choice of pattern type; (b) 
supporting S1 to access the underlying structure and the mathematical language; and, (c) 
asking S1 to generalise patterns using quasi-variables.  

Past research has highlighted an issue that arises from functional situations is the need to 
coordinate two data sets, and identify the relationship between these sets (Blanton et al., 
2015). Thus, in this present study the growing patterns selected for the tasks were deliberately 
chosen to ensure that this relationship was transparent and explicitly represented. This was 
achieved by using hands-on materials where the variables were explicit (pattern term cards, 
and coloured tiles) or could not be physically separated (embedded; e.g. plastic toy kangaroos 
and crocodiles). It is conjectured that representing growing patterns in this manner assisted in 
S1 attending to both variables in the pattern, potentially pushing her towards functional 
thinking rather than recursive thinking. 

This study adds research that suggests that in conjunction with how the pattern was 
presented; gesture, language, and hands-on materials contribute to making the underlying 
structure apparent for non-Indigenous students (Radford, 2011). To highlight particular 
structures of the pattern, specific and purposeful gestures were used as the researcher 
deconstructed the pattern. It was essential to gesture between the variables (pattern term, 
pattern quantity, and constant) as the pattern was deconstructed. During this process, there 
was a deliberate coordination between these gestures with the hands-on materials and the use 
of mathematical language (Radford, 2011). An example of the coordination of gesture and 
language is identified in Interview task 1 (cf. Miller & Warren, 2015).  

Finally, it appears that the use of quasi-variables potentially assists young Indigenous 
students to generalise growing pattern structures. By using quasi-variables, S1 was able to 
observe the general structure of the pattern regardless of the fact she had limited prior formal 
teaching of multiplicative thinking. The quasi-variable (e.g. 371th position) pushed S1 to see 
the structure of the pattern. This is potentially because students find it challenging and 
unproductive to apply an additive rule to a quasi-variable to determine the pattern quantity. 
This notion has also been supported in past studies with young students (e.g. Cooper & 
Warren, 2008). The findings of this present study also highlight that challenging young 
students to extend beyond their computational knowledge, results in a shift from an arithmetic 
approach when describing the pattern, to engaging in algebraic thinking (Radford, 2011).  

This paper begins to illuminate the learning trajectory in which young Indigenous students 
may take en route to developing functional generalisations while engaging with growing 
pattern tasks. Additionally, it adds to the literature by providing potential teaching actions that 
may assist students to move through these levels of sophistication. As one case is presented, it 
is acknowledged that there are limitations to the generalisablity of the data. Thus, further 
analysis of the larger cohort is to be conducted to determine if (a) both Indigenous and non-
Indigenous students have similar trajectories, and (b) if the teaching actions employed with S1 
contribute to changes in the larger cohorts thinking about growing pattern generalisations. 
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