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One potential means to develop students’ contextual and conceptual understanding of 
mathematics is through Inquiry Learning. However, introducing a problem context can 
distract from mathematical content. Incorporating argumentation practices into Inquiry may 
address this through providing a stronger reliance on mathematical evidence and reasoning. 
This paper presents a framework derived from the implementation of multiple, successive 
Argument-Based Inquiry units to 8-10 year olds. Three key knowledge domains are 
identified: mathematical, contextual and argumentation knowledge.  Key components and 
roles of each domain are addressed and offered as an initial framework for further research. 

A problem is only a problem if you don’t know how to go about solving it. A problem that has no 
surprises in store, and can be solved comfortably by routine or familiar procedures (no matter how 
difficult) is an exercise (Schoenfeld, 1983: p. 41). 

 
Mathematics education reform has been an ongoing goal in many countries for decades, 

the aim of which is to place a heavier focus on understanding of content and processes in 
context (NCTM, 2000). One approach which has found some prominence in meeting the 
goals of reform has been mathematical inquiry. Hmelo-Silver, Duncan, and Chinn (2007) 
define inquiry learning (IL) as a process in which “students are cognitively engaged in sense 

making, developing evidence-based explanations, and communicating their ideas.” (p. 100). 
This is achieved by engaging students with the discipline content through collaborative 
engagement in investigations: investigations which address contextualised, complex, ill-
structured problems that have neither a correct answer nor a clearly defined approach 
(Makar, 2012). Such problems require students to pose a refined question that is both defined 
and mathematised (Allmond & Makar, 2010), to gather and analyse evidence, and to provide 
a response. However, contextualisation of mathematics has given rise to some criticism, with 
one significant concern being the possibility for mathematics and mathematical language to 
become lost through focus on the context (Wu, 1997). One possibility for supporting the 
focus on mathematics in IL is the introduction of argumentation. 

Argumentation as a pedagogy has demonstrated enhanced student understanding, 
discourse, and ways of knowing specific to science (Jimenez-Aleixandre & Erduran, 2007). 
Literature addressing argumentation research in the mathematics domain is readily available; 
however, much of this research involves argumentation based on mathematical proof (e.g. 
Conner, 2007; Lampert, 1990) or mathematical procedure (e.g. Goos, 2004; Yackel & Cobb, 
1996). In no way does the research here attempt to detract from those approaches, rather, the 
purpose is to address an additional approach, that is, argumentation applied to problems 
which are both undefined in terms of solution and solution pathway. Overlaying inquiry with 
argumentation provides students with the opportunity to engage in these complex problems 
while a clear expectation of the provision of mathematical evidence and reasoning is 
established.  

One of the potential complexities with introducing argumentation to young students is 
the lack of familiarity with argumentation practices. Argument essentially exists in two 
forms; it is both a product and a discursive practice (Leitão, 2000). Blair defines argument 
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as “a set of one or more reasons for doing something” and argumentation as “the activity of 

making or giving arguments” (Blair, 2012, p. 72). The most widely used model of 
argumentation is that of Toulmin (1958). However, this model is predominantly a structural 
approach to argument which, while useful for argument as product, provides no guarantee 
that any evidence or reasoning presented is epistemically acceptable (Kelly, Druker, & Chen, 
1998). McNeill and colleagues provide a Claim-Evidence-Reasoning (CER) model which 
derives from the more complex Toulmin model of argument but which has been adapted to 
provide a simplified model for science education purposes (McNeill & Krajcik, 2008, 
McNeill & Martin, 2011). Another advantage of the CER model is that the claim and 
evidence components take on an evidenced approach: claim being the conclusion that 
addresses the original question and evidence being the scientific data that supports the claim. 
A third component, reasoning, focuses on bringing in the scientific background knowledge 
or scientific theory that justifies making a claim-to-evidence link. 

 The CER model used in science education provides a means in mathematics education 
to focus students on the use of evidence and reasoning appropriate to the discipline when 
responding to complex inquiry-based problems (Wells, 2014). Accordingly, the aim of the 
research presented in this paper is to provide a working framework that conveys the essential 
components of mathematical argument-based inquiry (ABI) structured on the CER model. 

Research Context 
This research study addressed the use of argumentation to enhance the learning of 

students who were engaging with IL practices. Due to the pragmatic nature of the research, 
the desire to create theory, and the likely need to implement multiple iterations of ABI, 
design-based research was adopted as a methodological approach (Cobb, Confrey, diSessa, 
Lehrer, & Schauble, 2003).  

The findings reported here derive from a larger project which took place at a 
metropolitan government primary school in Australia. In this project, various classes of 
students, ranging from Foundation to Year 5, who had been engaged in IL were introduced 
to ABI. The findings reported here derive from analysis of a class of initially Year 4 students 
over a period of 18 months.  The students in this study had become accustomed to addressing 
complex questions and the classroom culture was one that supported IL (for further detail 
about Inquiry culture, refer to Makar, 2012). Three iterations (10-15 lessons each) of ABI 
were conducted with this class and video-recorded in full (see Table 1).  

Each unit was viewed and logged lesson by lesson, with time stamps, excerpts of 
students’ work, and still shots of teaching materials. This was done to illustrate the nature 
and context of each lesson, provide an overview, and enable cross comparison between the 
units for particular patterns in the development of the inquiry. Each lesson was transcribed 
in full by the researcher, and then relevant sections were coded through either theory derived 
concept names previously identified through the literature (for example, ‘evidence’, ‘claim’, 
‘question’) or through participant derived concept names (for example, ‘evidence for the 
conclusion’) (Corbin & Strauss, 2008). Coding continued until such time as saturation was 
deemed achieved. These codes were clustered into code categories and substantive 
categories were developed and used to map themes and relationships (Clarke, 2005, p. 83). 
From this process, three knowledge domains were identified: mathematical, contextual and 
argumentation. To illustrate, two responses given by students to support their claims that 
shower timers were useful, are provided along with the coding chain in parentheses. 

Dominica: We tested every shower timer 5 times we worked out that 18/30 were accurate and 
ran in the range of 3:36 – 4:24. For the other 12 shower timers they were faulty 
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because they were out of the range … [or] they stopped during timing. [Argument 
Knowledge/Evidence Quality/Mathematical Evidence] 

Leanne:  …if you have a hot shower you could use up all the hot water. [Argument Knowledge/ 
 Evidence Quality/Irrelevance] [Context Knowledge/Prior Experience/Impeding 
Evidence] 

 
This provided the skeleton of the model and also some insight into the roles of both the 

domains and the components of the domains by examining the material coded to each 
component. As a result, a model of ABI was developed, along with some insight into the 
components of these domains (for detailed explanation, refer Wells, 2014).  

 

Table 1 
Overview of the ABI unit sequence 

Theoretical Model 
The ABI model (Figure 1) incorporates three knowledge domains: the mathematical 

knowledge required to progress through the problem; the understandings that surrounded the 
context employed; and, the knowledge of structures and conventions of argumentation. At 
any one time, students could be drawing on one or more of these domains to engage with 

ABI. This section will provide an overview of each domain followed by a discussion on the 
role of each domain in ABI. 

 

 Inquiry 
Question 
(Context) 

Mathematical Content 
Addressed 

Argumentation 
Structure Addressed 

Argumentation Processes 
Addressed 

1 Does Barbie 
have the same 
proportions as a 
human? 
 
Term 4,  
Year 4 

Proportional reasoning 
Informal representation 
Fractional representations 
Informal inference  
Distribution 
Samples vs populations 
Data representations – 
tallies, dot plots 

 

Informal introduction 
of Claim – Evidence  
Role of Evidence 

Informal introduction of 
Claim – Evidence links  
Challenging evidence  

2 Can a pyramid 
have a scalene 
face? 
 
Term 3,  
Year 5 

Geometrical reasoning 
Properties of triangles 
Properties of pyramids 
Angles 

Formal introduction of 
claim, evidence, 
reasoning and 
qualification 
Quality of evidence 
Scaffolded argument 

 

Envisaging and gathering 
evidence 
Selecting evidence for 
inclusion 
Mathematical Reasoning 

3 Are government 
issued shower 
timers accurate? 
 
Term 4,  
Year 5 

Time: duration & 
measurement (min:sec) 
Data recording and 
representation 
Measures of centre 
Variability 
 

Quality of evidence 
Construction of  
arguments with limited 
scaffolding 
Consideration of 
qualifiers and rebuttals 

Critical examination of 
arguments. 
Planning collection, 
representation and 
analysis of data 
Statistical Reasoning 
Articulating claims 
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Figure 1. Model of interacting domains in Argument-Based Inquiry. 

Context knowledge 

Four key components of Context Knowledge were identified: prior experiences, 
understanding, affect, and discourse. Prior experience with the context describes the past 
engagement that the students had with the problem context. These experiences may be quite 
different for each student, they may be school or family based, culturally specific, or gender 
based. This is closely related to the student’s understanding of the context as this may derive 
from experience, but may also derive from teaching or reading for example. Prior 
experiences are considered in this instance as those occurrences that are not open to change 
as the experiences are historically situated – they have occurred; however, understandings, 
even if built on prior experiences, are able to be challenged, deepened and altered through 
subsequent experience or knowledge. Affect also takes a part in context knowledge as prior 
or ongoing experiences and understandings may instil and elicit emotive responses in 
students that are associated with the context. Students may hold particularly strong feelings 
or intuitively held beliefs about a context and these may serve to influence their engagement 
or interpretation of the results. The final component identified was the discourse of the 
context. Students’ familiarity with the context has the potential to provide an underlying 
language and terminology for use. While this is not essential to the mathematical 
understanding, it has the potential to support or challenge students’ involvement in 
classroom discourse. 

Context knowledge serves to situate the application of mathematics, authenticate the 
learning, and engage students in the learning sequence. For example, the first learning 
sequence enabled connections between aspects of mathematics (fractions, proportion, and 
statistics), other curriculum areas (human proportion in the Arts) and the ‘real’ world 
(clothing manufacture). Context also served as a ‘hook’ to engage students in the 
mathematical learning. In the same unit, students spent some time talking about the unit 
purpose and reflecting on reasons why ‘normal’ proportions for humans would be required, 
including forensic applications. Students were thus able to see important reasons for 
establishing human proportions that were connected to the real world.  
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Argumentation Knowledge 

The second domain of the proposed model is Argumentation Knowledge, which draws 
upon the knowledge the students have around argument structure and argument process. 
Analysis of the classroom activities and interactions, along with consideration of prior 
literature in this area, suggests several components of Argumentation Knowledge significant 
to ABI: generic structure of the argument, quality of the argument and discursive process.  

During the second unit, the students negotiated and developed their own model of ABI 
which they felt was useful in supporting the process for others (Figure 2). It shows the IL 
focus of Purpose-Question-Evidence-Conclusion (refer to Fielding-Wells, 2010) while 
expanding the Conclusion to encompass the generic structure of the CER model (McNeill & 
Krajcik, 2008; McNeill & Martin, 2011). One additional category, qualifiers, was introduced 
to meet student need. Analysis showed students using qualifiers in two distinct ways: as 
modal qualifiers and as ‘delineating qualifiers’. Modal qualifiers were used to express the 
strength of a claim - probably, certainly, possibly - and appeared most frequently in 
arguments involving informal statistics to express a level of uncertainty about inferences 
made from sample data (see informal statistical inference, Makar & Rubin, 2009). The 
second type of qualifiers served to identify limits to the conditions that the claim applied to. 
The nature of ill-structured questions is such that the questions needed refining and 
negotiating to researchable point and this is of itself limiting. Thus, qualifiers may provide 
a way of expressing the limitations surrounding the inquiry and impacting on the argument: 
For example: For the measurement foot length to lower arm length, Barbie’s proportions fell 
outside the range of a normal human.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Process of Argument-Based Inquiry. 

 
 
The second component of Argumentation Knowledge is discursive process. The 

mathematics argument is essentially a discursive practice, even if one is arguing with 
oneself. However, it is not a practice which is usually encountered in the learning 
environment, and hence a culture of argument and the practice of “appropriate arguing” 
needs to be developed in the classroom (Pontecorvo & Pirchio, 2000).  

Argument quality is the third component to Argument Knowledge. Stressing the 
importance of quality enables students to see the importance of the role of evidence, both in 
helping to support a strong claim and it making such a claim in the first place. Affect, the 

 

Evidence 
Claim 

Reasoning 

Qualifier 

Evidence 

Question Conclusion 

Purpose 

218



final component, is important in argumentation practice as the students need to be willing to 
engage in argumentation activities as there is potential for this to be confronting.  

The overall role of argumentation knowledge is to provide students with a support or 
structure to frame their own argument products and present their arguments as a process. 
Having students construct and present their arguments in written and oral format serves to 
organise and demonstrate their thinking. As students or student groups articulate their claim, 
evidence and reasoning, there is valuable opportunity for students and teachers to probe 
understanding and thinking quite deeply.  

Mathematical Knowledge 

The proposed model of ABI also incorporates Mathematical Knowledge. Enhanced 
conceptual and procedural knowledge is a key component and was a primary reason for the 
implementing of ABI based prior success in science education research, as demonstrated by 
Jimenez-Aleixandre and Erduran (2007). Findings from the mathematics research addressed 
in this paper suggested that was the case for mathematics also as students’ arguments over 
the course of the research showed gains in evidence quality across multiple indicators; 
including, evidence collection, organisation, representation, interpretation and reasoning 
(Wells, 2014).   

A second component of Mathematical Knowledge reflects the nature of community 

practice. As students develop in knowledge, their mathematical practices need to 
increasingly approximate the authentic practices of mathematicians (Collins, Brown, & 
Newman, 1989). By taking part in the community practice of mathematics, students develop 
understanding of what is important and valued by the mathematical community. At the 
commencement of the initial unit, only two students selected data as essential in convincing 
others of the accuracy of their claim. By the conclusion of the second unit, all students were 
providing objective data and, in the third unit, were examining evidence critically.  

Discourse is an important component of building mathematical knowledge. Through 
engaging in discussion, students have the opportunity to express ideas, have them challenged 
and thus develop robust reasoning. They also have opportunities to use the language of 
mathematics and this helped them develop their understanding of concepts and terms within 
context, giving students the opportunity to express themselves precisely. The opportunity to 
use these terms and develop contextualized meaning is vital to students’ engagement in 
mathematical practice (Lee & Herner-Patnode, 2007). 

Affect was not a specific focus of this research but warrants inclusion in this model and 
is flagged as an area of future research. Mathematics is a subject area that has been 
characterized by poor student engagement (McPhan, Moroney, Pegg, Cooksey, & Lynch, 
2008). Early research reported elsewhere (Fielding-Wells & Makar, 2008) suggests that IL 
has potential to curb and even reverse aspects of disengagement in mathematics among 
primary aged children and hence, flagging this for further research is important. 

Mathematical Knowledge plays an important role in ABI for the obvious reason that a 
student cannot argue mathematically without drawing on mathematics. However, the need 
to address a question using mathematically-derived evidence requires that students can 
envisage the evidence, and thus the mathematical concepts and procedures that would be 
useful in addressing the question. Students demonstrated on multiple occasions that, even if 
they didn’t have the mathematics needed, they could envisage what they needed to be able 
to do and request instruction. For example, in the first unit, students could envisage what 
needed to be done – finding a means of comparing a Barbie doll to a human – but the 
difficulty arose in that the students did not know how to do that. This quandary gave students 
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their first insight into a mathematical need for proportional reasoning and they requested that 
the teacher show them a mathematical way to make such comparisons.  

Conclusions and implications 
The research goal was to identify some key features of an ABI model as implemented in 

a primary mathematics setting. Three domains necessary to the development of ABI have 
been identified as Mathematical Knowledge, Argumentation Knowledge and Context 
Knowledge and each has a significant role to play in learning through ABI. Brown and 
Campione (1996) suggest that a framework such as that provided here should “contribute to 
a theory of learning that can capture and convey the essential features of the learning 
environments that we design”. The intent has been to contribute to such a theory, not as an 
accomplishment, but rather as an early framework that will flag the potential of ABI in 
mathematics learning and provoke discussion and research into the area. By conceptualising 
ABI, researchers and educators have an increased opportunity to visualize what it entails, 
and be cognisant of components for planning and implementation purposes. Development 
of a model also potentially promotes a common language around which to articulate 
discussion and critique of ABI.    
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