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Many researchers argue that a deep understanding of fractions is important for a successful 

transition to algebra. Teaching, especially in the middle years, needs to focus specifically 
on those areas of fraction knowledge and operations that support subsequent solution 

processes for algebraic equations. This paper focuses on the results of Year 6 students from 

three tasks from a Fraction Screening Test that demonstrate clear links between algebraic 

thinking and students’ solutions to fractional tasks involving reverse processes. 

The National Mathematics Advisory Panel (NMAP, 2008) stated that the conceptual 

understanding of fractions and fluency in using procedures to solve fractions problems are 

central goals of students’ mathematical development and are the critical foundations for 

algebra learning. Teaching, especially in the primary and middle years, needs to be 

informed by a clear awareness of what these links are before introducing students to formal 

algebraic notation.  

Sixty-seven Year 6 students from an eastern suburban metropolitan school in 

Melbourne were tested using our Fraction Screening Test (Pearn & Stephens, 2014). This 

paper  aims to identify and examine students’ responses to three tasks from the test that 

demonstrate clear links between algebraic thinking and students’ solutions to fractional 

tasks involving reverse processes.  

Previous Research  

According to Wu (2001) the ability to efficiently manipulate fractions is "vital to a 

dynamic understanding of algebra" (p. 17). Many researchers believe that much of the 

basis for algebraic thought rests on a clear understanding of rational number concepts 

(Kieren, 1980; Lamon, 1999; Wu, 2001) and the ability to manipulate common fractions. 

There is also research documenting the link between multiplicative thinking and rational 

number ideas (Harel & Confrey, 1994).  

Siegler and colleagues (2012) used longitudinal data from both the United States and 

United Kingdom, to show that, when other factors were controlled, competence with 

fractions and division in fifth or sixth grade is a uniquely accurate predictor of students’ 

attainment in algebra and overall mathematics performance five or six years later. They 

controlled for factors such as whole number arithmetic, intelligence, working memory, and 

family background. We need to extend these important findings to highlight for teachers 

those specific areas of fractional knowledge that impact directly on algebraic thinking. 

Lee and Hackenburg (Lee, 2012; Lee & Hackenburg, 2013) conducted research with 

18 middle school and high school students. Their research showed that fractional 

knowledge appeared to be closely related to establishing algebra knowledge in the domains 

of writing and solving linear equations and concluded: “Teaching fraction and equation 

writing together can create synergy in developing students’ fractional knowledge and 

algebra ideas" (p. 9). Their research used both a Fraction based interview and an Algebra 

based interview. The two interview protocols were designed so that the reasoning involved 

in the Fraction based interview provided a foundation for solving problems in the Algebra 
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Interview. In both Interviews students were asked to draw a picture as part of the solution. 

For the Fraction tasks they were also asked to find the answer whereas in the Algebra tasks 

they were asked to write an appropriate equation but not solve it. Examples of one of each 

of the Fraction and Algebra Tasks are shown in Table 1 below.  

Table 1 

Examples of tasks used by Lee and Hackenburg  

Fraction Task Algebra Task 

Tanya has $84, which is 
7

4
 of David’s 

money.  

Could you draw a picture of this situation?  

How much does David have? 

Theo has a stack of CDs some number of 

cm tall.  

Sam’s stack is 
5

2
of that height.  

Can you draw a picture of this situation? 

Can you write an equation?  

After analysing the data, Lee (2012) constructed models to determine the fraction 

schemes used by students and their reasoning about unknowns and writing equations. 

However, the important point that these authors make is that the thinking required to solve 

this type of fraction task is very similar to the kind of thinking required to “solve for x” in a 

corresponding algebra equation. Both the Fraction Task and the Algebra Task from the Lee 

and Hackenburg study (2013) shown in Table 1 require multiplicative thinking to move 

from a given fraction to the whole, and relating these actions to the corresponding 

quantities. They cannot be solved additively, for example, by saying “I have to add another 

three-sevenths”. We notice that in the Fraction Task above students are not asked to 

explain their thinking or what the picture represents. Moreover Lee and Hackenburg do not 

discuss the range of possible methods that students might use to solve the fraction task, 

presenting instead an example of a picture and associated comments by one student. 

Students are not required to solve the algebra equation (S = 
5

2 T where S and T represent 

the number of CDs that Sam and Theo have). 

Stephens and Pearn (2003) identified Year 8 proficient fractional thinkers as students 

who demonstrated a capacity to represent fractions in various ways, and to use reverse 

thinking with fractions to solve problems. This research also showed that effective reverse 

thinking depends on a capacity to apply multiplicative operations to transform a known 

fraction to the whole. This capacity will later be fundamental to the solution of algebraic 

equations. In this study we identify algebraic thinking in terms of students’ capacity to 

identify an equivalence relationship between a given collection of objects and the fraction 

this collection represents of an unknown whole, and then to operate multiplicatively on 

both in order to find the whole. Jacobs, Franke, Carpenter, Levi, and Battey (2007) also 

emphasise the need to “facilitate students’ transition to the formal study of algebra in the 

later grades (of the elementary school) so that no distinct boundary exists between 

arithmetic and algebra” (p. 261). Three distinct aspects of algebraic thinking identified by 

Jacobs et al. (2007) and by Stephens and Ribeiro (2012) are important for this study. They 

are students’ understanding of equivalence, transformation using equivalence, and the use 

of generalisable methods.  
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This Study 

Unlike the Lee and Hackenburg study (2013) which used both a Fraction Interview and 

a separate Algebra Interview, our study is based on analyses of students’ performances in a 

single paper and pencil test of fractional thinking. Previously Pearn and Stephens (2007) 

used a Fraction Screening Test and Fraction Interview using number lines to probe 

students’ understanding of fractions as numbers. Results from these showed that successful 

students demonstrated easily accessible and correct whole number knowledge and knew 

relationships between whole and parts.  

The current version of the Fraction Screening Test (Pearn & Stephens, 2014) includes 

items that require students to use reverse or reciprocal thinking. The Fraction Screening 

Test was divided into three parts. Part A included 12 tasks, 11 tasks had been trialled in 

previous work (Pearn &Stephens, 2007). Part A tasks included routine fraction tasks such 

as equivalent fractions, ordering fractions and recognising simple representations. Part A 

also included a simple reverse thinking task showing a collection of four lollies and saying: 

“This is one-half of the lollies I started with. How many lollies did I start with?” This task 

was correctly answered by the majority of students and was one of the easiest questions in 

Section A. Part B included five number line tasks with four tasks trialled in previous work. 

One number line task involving reverse thinking gave a number line showing “where the 

number 
3

1
 is. Put a cross (x) where you think the number 1 would be on the number line.” 

Part C included three questions which required students to use reverse thinking using less 

familiar fractions (see Figure 1).  

Our Sample 
Sixty-seven Year 6 students from an eastern suburban metropolitan school in 

Melbourne were tested using our Fraction Screening Test (Pearn & Stephens, 2014). 

Students completed the tests in approximately 30 minutes. After analysis of the 67 sets of 

responses, 19 students were chosen for closer analysis. These 19 students had correctly 

solved each of the three questions shown in Figure 1 and provided adequate explanations 

of their thinking. They were asked to provide a more detailed written explanation of their 

solution to one question only in order to confirm their thinking.  

Our Three Key Questions 
The analysis for this paper is based on these three items from Part C which specifically 

required students to use reverse or reciprocal thinking in which their task is to find a whole 

collection when given a part of a collection and its fractional relationship to the whole.  

We devised these three items to offer students opportunities to use more explicit 

algebraic thinking which was not needed in the earlier task relating to one-half. Each of the 

three questions was marked out of three. Only one mark was given if there was some 

evidence of correct diagram or of an initial representation which the student did not take 

further (starting point). Two marks were given for a correct answer but without explanation 

and three marks were given for an adequate explanation. 
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Figure 1. Questions 5 – 7 

Like Kieran (1981) and Jacobs et al. (2007) we do not restrict correct algebraic 

thinking to students’ ability to use pro-numerals or unknowns or necessarily to set up 

formal algebraic equations. We expect that these Year 6 students who have not necessarily 

been exposed to formal algebra will employ a variety of successful representations to solve 

these problems. We also expect that some students may use a routine algorithm to solve the 

problem. Simply using a routine without an appropriate explanation may not be convincing 

evidence of algebraic thinking. However, we also expect that some students may choose to 

solve the same problems in non-algebraic ways. 

Results 

Among the 67 students, five groups were identified: Group A (19 students) who 

correctly answered and adequately explained each of the three questions (scoring 9 

marks out of a possible 9). Group B (9 students) answered the three questions correctly but 

gave an incomplete explanation or no explanation for one of their correct answers (scoring 

7 or 8). All Group B students scored a 3 for Question 5. Group C (14 students) all had 

correct answers to Question 5, with 12 providing adequate explanations (scoring between 4 

and 6). Group D (11 students) scored between one and three marks on the same three 

items. All 11 students omitted to answer at least one of the questions. Four students had 

correct answers to Question 5, with three providing adequate explanations. No student in 

this group correctly answered Question 7. Group E, (14 students) scored 0 on all three 

questions, providing insufficient evidence of performance. 

Forty-six of the 67 students (69%) gave correct answers and 43 gave adequate 

explanations to Question 5. The diagram accompanying this problem may have assisted 

students to solve the problem. Some students’ explanations used reverse thinking to show 

that one-third was equivalent to 5 dots and therefore the whole needed to be 15. Other 

students’ explanations involved additive one-step thinking saying that one more row was 

needed to make the whole.  Either explanation is suitable for this question.  

Question 6 was correctly answered by 38 students (57%). Not being supported by a 

diagram, it appeared more difficult. Using one-step additive thinking is not helpful in 

solving this problem.  It was necessary for students to calculate the number of CDs 

represented by 
7

1  and to scale up that quantity to make a whole. More difficult was 

Question 7 involving an improper fraction 
6

7  even though it was supported by a 

quantitative representation. Question 7 was correctly answered by 32 of the 67 students 

(48%). Some successful explanations applied a fractional lens to decode the 14 dots 
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shown, arguing that each pair of dots represents 
6

1  and that the whole can be found by 

subtracting two dots. This solution, as is Emily’s solution to Question 6 (see Figure 2), 

involves similar two-step thinking as those students who first divide the 14 counters by 7 

to find how many counters are represented by 
6

1  and then to multiply (scale up) by 6 to 

find a whole. These two questions, even with a diagram provided for Question 7, were 

more difficult than Question 5.  

 Analysis 

In this section, we focus on the 19 students (Group A) who gave completely correct 

responses and adequate explanations to all three questions. Some explanations were briefly 

written leaving some thinking unstated and raising a question of whether these students 

may have been using a routine. Each of the 19 students was asked to provide a short 

written elaboration of their initial explanation to one question selected by the researchers. 

In looking at their initial responses and their subsequent elaborations our goal was to 

identify those features that could be confidently taken to indicate evidence of algebraic 

thinking. Our focus was to identify instances of student thinking that could be clearly 

classified as algebraic; namely, understanding of equivalence, transformation using 

equivalence, and use of generalisable methods. Students in Group A offered the best 

chance to show this. 

Confident Reverse Thinkers 
Responses of Group A students show that confident reverse thinkers are able to step 

back from a visual representation, and to relate the fraction to the numerical quantity it 

represents. These students know how to scale down and scale up fractions and the 

quantities they represent to obtain a measure for the whole. Scaling down and scaling up is 

a reliable two-step procedure for finding the whole. It may even be compacted into one-

step. These students are not dependent on using additive strategies which may be 

appropriate for simple fraction problems like the one-half task in Part A.  

From the 19 fully correct responses four different types of responses were evident: 

Response Type 1. Eleven students employed equivalent operations using fractions and 

whole number quantities in parallel.  See for example Emily’s response to Question 6 in 

Figure 2 where she wrote  
4

7
 ÷ 4 = 

1

7
 × 7 = 

7

7 
 = 1 on one line and 12 ÷ 4 = 3, 3 × 7 = 21 on 

the one underneath tracking both fractional and whole number computation in parallel. 

  

 
Figure 2. Emily’s response to Question 6 
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Emily’s response can be directly compared to a two-step solution for  
4

7
 𝑥 = 12 . Like 

some other students, Emily uses an equal sign idiosyncratically to connect her steps as in 

the first line of her response. However, Emily clearly understands the need for equivalent 

operations to relate the two lines of her solution. Other students write “equivalence 

relationships” involving fractions and whole numbers together. For example, in Question 6 

some students wrote:  
7

4
= 12, 

7

1
= 3, 3 × 7 = 21 

Sometimes a two-step reverse operation is compacted into one step as Kenneth’s 

response to Question 5 as shown in Figure 3.  

 

 

Figure 3. Kenneth’s response to Question 5 

Kenneth’s response mirrors very closely the kind of transformational thinking needed to 

solve the algebraic equation  
2

3
 𝑥 = 10 → 𝑥 = 10 × 1

1

2
 .  

Response Type 2. Six students left the fraction unstated and operated directly on the 

whole number quantity. While scaling up the fraction is left invisible, this transformation 

clearly guides the operations on the associated whole numbers using equivalence: For 

example, one two-step response to Question 6 was 12 ÷ 4 = 3, 3 × 7 = 21; or by another 

student on the same question: 12 × 7 = 84, 84 ÷ 4 = 21 or in one compacted step by 

another student for Question 7 was 14 ÷  
7

6
. These strategies explicitly show the kind of 

generalisable algebraic thinking needed to solve the equation 
6

7  x = 14 

Response Type 3. Symbolic representation using an unknown was used by one student 

only. Figure 4 shows Julie’s response to Question 6: 12 is 
7

4  of x, meaning that 𝑥 = 12 ÷

 
4

7
 which is now 

12 

1
 ×  

7

4
  

 

 

Figure 4. Julie’s response to Question 7 
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Julie’s response shows a clear understanding of equivalence and transformation. It is 

also generalizable unlike Response Type 4 which relies on written descriptions involving 

continued adding. This was used by one student for Question 6 who stated: “ 
4

7
 of Kay’s 

CD collection is 12. That means that 
1

7
  is 3. I started adding 3 onto 12 until it reached  

7

7
 . 

That number is 21”. Multi-step responses like this correctly establishing that one-seventh is 

equivalent to 3 then rely on additive strategies to achieve the whole. This is a more limiting 

strategy than shown in the preceding Response Types which demonstrate reciprocal 

thinking. 

Mixed Methods 
Julie, who used a pro-numeral expression for Question 6, used the second and also 

generalisable method to solve other questions (e.g. 10 ÷  
2

3
  to solve Question 5). While 

some Group A students tended to use either the first or second method consistently, most 

used a mix of methods. We wondered, for example, if the student who wrote 14 ÷  7 = 2 

× 6 = 12  might be using a routine, but this student later explained that “14 was split into 

seven numerator groups”. Adding, “I could have taken one group away”. 

A similar range of methods, excluding symbolic representation, was evident among 

students in Groups B and C. However, among students in Groups C and D additive 

processes became more evident, like this Type 4 explanation from a student in Group C for 

Question 5: “I had to halve 10 because 
2

3
 is 10, halve 2 to get 1, and so I did this to get 5. I 

just added it (5) on after (to get 15).”  

Among students in Group D explanations begin to show less evidence of multiplicative 

(reverse) thinking: “Started with 10 to get 15”; or “Every 5 is 
1

3
 ”; or “Because there are 5 

in each row and 10 is 
2

3
 of 15”; or “

1

3
 = 5, 

2

3
 = 10, 1 = 15”. There is clear evidence of 

equivalence but these additive strategies have less algebraic potential compared to the 

efficient multiplicative (reverse) strategies shown by those using Response Types 1, 2, and 

3. Algebraic thinking, as we have defined it, requires more than use of equivalence. It 

needs to be reflected in confident and appropriate transformations of the fractional entities 

involved.  

Conclusion and Implications 

Confident reverse thinkers are able to scale down and scale up (or scale up and then 

scale down) based on the meaning of the particular fractional relationship. This is exactly 

what is required in “solving for x” in corresponding algebraic representations. Their 

working shows that scaling down and scaling up of fractional quantities must be 

accompanied by equivalent changes in the quantities represented by a particular fraction. 

These methods and their resulting mathematical relationships are indicative of algebraic 

thinking, by which students demonstrate that they can manipulate the fractional and 

numerical quantities independently of any diagram or visual representation.  

The algebraic significance of these findings is that they draw attention to three quite 

specific aspects of fractional operations that are not sufficiently emphasised in earlier 

studies. The first is being able to transform (operate on) a given fraction in order to return 

it to a whole, regardless of whether the fraction is expressed in proper or improper form. 

The second is students’ understanding of equivalence, meaning that the operations that are 
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required to restore a fraction to a whole need to be applied to the corresponding numerical 

quantities represented by the fraction. The third is to utilise efficient and generalisable 

multiplicative methods to achieve this goal; in contrast to other methods, usually additive, 

which may work only with simple fractions. All three aspects are essential for the 

subsequent solution of algebraic equations. Teachers especially need to help students 

identify and use these efficient and generalisable strategies.  
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