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When viewed through a lens of embedded cognition, algorithms may enable aspects of the 

cognitive work of multi-digit multiplication to be ‘offloaded’ to the environmental structure 

created by an algorithm. This study analyses four multiplication algorithms by viewing 

different algorithms as enabling cognitive work to be distributed across environmental and 

mental resources to varying degrees. This produces a plausible framework which could 

allow further analysis designed to guide the pedagogical use of alternative algorithms. 

Many students struggle to learn the traditional written algorithms introduced in primary 

school (Pearn, 2009). Heirdsfield (2004) states: “vertical algorithms dictate a rigid 

procedure, and do not lend themselves to encouraging students to manipulate numbers 

flexibly” (p.8). However, Westwood (2000) suggests that: 

children should have no problem mastering these procedures [algorithms] if they are linked as 

closely as possible with the more informal methods … that are typically used by children … 

difficulties arise if the processes are taught without reference to children’s prior learning or way of 

recording (p. 47). 

While many teacher publications (such as Randolph & Sherman, 2001) have advocated 

that alternative algorithms may be beneficial for students, there is less written regarding 

exactly how and why an alternative algorithm may help students (Carroll & Porter, 1998). 

This paper uses a theoretical framework based on embedded cognition to try to assess how 

different algorithms may impact on the cognitive demands of multi-digit multiplication. 

This analysis may provide some explanation as to why some students develop a preference 

for an alternative algorithm, enable such preferences to be used to diagnose student 

understanding and suggest a framework which could demonstrate when teaching an 

alternative algorithm may or may not be justified. This paper focuses on alternative 

multiplication algorithms that can be used instead of ‘traditional’ long multiplication for 

multi-digit problems. 

Student use of Alternative Algorithms for Multiplication 
‘Alternative’ algorithms are defined in contrast to the ‘traditional’ algorithm which is 

sometimes referred to as long multiplication (West, 2011). Many articles which explain 

alternatives to long multiplication are aimed at helping teachers learn how to use these 

alternatives so that: 

Students’ individual needs and styles are the focus of lessons on alternative algorithms. Using these 

options, students develop their own understanding of, and skills in, arithmetic operations, enhancing 

their decision-making and critical thinking skills (Randolph & Sherman, 2001, p. 484). 

Advocates of alternative algorithms tend to argue that they may be of benefit to 

students because knowing alternative methods improves general understanding. It has been 

noted that some students develop a preference for some algorithms. Lattice multiplication 

is one such alternative algorithm – an example is presented in Figure 1 and explained in 

detail in Results. When Carroll and Porter (1998) described the method they noted that, 

“although the reasons are not obvious to us, this method has proved to be very popular 

with students” (p. 111). They also note that low-achieving students tend to like this 
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method, perhaps because of its structure. If low achieving students prefer an algorithm 

such as the lattice method, then perhaps there is something about either the lattice method 

or student understanding which explains this preference. Also, if students’ general 

understanding of mathematics is enhanced by use of alternative algorithms, some 

investigation of the mechanisms which underpin this seem warranted. This study uses a 

framework of embedded cognition to attempt to make sense of students’ use of alternative 

algorithms. The analysis seeks to provide a lens which enables alternative algorithm use to 

be interrogated in more detail. If alternative algorithms can cater to students’ individual 

needs, as Randolph and Sherman (2001) state, then one should ask which student needs an 

alternative algorithms addresses. Embedded cognition, described in the next section, 

provides a method for analysing how cognitive work can be distributed across mental and 

environmental resources. It is hypothesised that different distributions of this cognitive 

work by different algorithms may change the mental demands placed on students as they 

solve a problem.  

 
Figure 1. 34 × 26 using the lattice algorithm 

An Embedded View of Cognition 
Embedded cognition posits that cognition is embedded in an environment. This means 

that people use environmental structures to ‘offload’ cognition so that cognition is 

distributed across both environmental and mental resources (Kirlik, 2007). It is theorised 

that the environment provides a direct model of a problem and that a person can use and 

create environmental structures which offload cognition, using a combination of mental 

and environmental resources to perform tasks which, traditionally, have been seen to occur 

purely mentally. 

Kirlik’s (2007) model of embedded cognition has been developed in the research field 

of Human Factors and Ergonomics. It draws on situated theories of learning, such as those 

developed by Greeno (1998), to describe the interaction between workers and their task 

environments – mainly in Kirlik’s main field of interest, aviation. While situated learning 

theorists often focus on how learning is situated within complex social entities (Greeno, 

1998), Kirlik’s focus examines how cognition is situated within a physical task 

environment. This paper seeks to assess whether the view that cognition can be ‘offloaded’ 

to physical environmental structures could provide a productive lens to understand how 

children develop preferences for particular algorithms. Kirlik’s view of embedded 

cognition would suggest that, when children use different algorithms, they may be able to 

manipulate or utilise environmental structures, in such a way as to ‘offload’ cognition and 

reduce demands made on mental resources. Information can be stored and updated in the 

environment. A calculation can be separated into simpler calculations. Each of the simple 

calculations can be performed mentally, then results can be stored in the environment and 

combined with the results of other calculations at a later time, so that running totals of 

simple calculations do not have to be maintained mentally. By writing or typing 

information into an algorithm’s predetermined structure, not only can information be 

stored, but cognitive processes can be ordered and coordinated. Just as Kirlik (2007) has 
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argued that professionals in aviation are able to improve their task performance by 

effectively distributing ‘cognitive work’ across both mental and environmental resources, 

algorithms may facilitate more effective computation via a similar process of offloading. 

What ‘Cognitive Work’ do Algorithms Perform? 
For the purposes of this study, multiplication algorithms are being viewed as cognitive 

aids which enable a multiplication problem to be broken up into a series of less cognitively 

demanding subroutines. The authors distinguish between two phases in multiplication 

algorithms – a multiplication phase and an addition phase. For example, when calculating 

34 × 26, most algorithms enable 34 × 26 to be calculated by separating 34 × 26 into a 

series of simpler calculations (e.g. 6 × 4, 6 × 3, 2 × 4, 2 × 3). Kilian, Cahill, Ryan, 

Sutherland, and Taccetta (1980) found that 32% of student errors occurred using the 

traditional algorithm related to miscalculation in this multiplication stage. 

During these calculations, the place value position of the numbers being multiplied 

may be suspended. When calculating 34 × 26, 30 must be multiplied by 6. Algorithms 

which suspend place value enable this calculation to be carried out as 3 × 6. If an algorithm 

suspends place value, then successful use of the algorithm requires some cognitive work 

which recognises that this 3 × 6 is in fact 3 tens × 6 (and is therefore 18 tens rather than 

18). Kilian et al. (1980) found that 18% of student errors involving the traditional 

algorithm related to place value. 

As algorithms break 34 × 26 into a series of simpler calculations another cognitive 

demand of using the algorithm entails ensuring that all of these simpler calculations are 

performed. The term ‘completeness’ is used to refer to the cognitive task of ensuring that 

all relevant simpler calculations have been performed. Kilian et al. (1980) found that 7% of 

students’ errors using the traditional algorithm involved missing one of these simpler 

calculations. 

In the addition phase, the products of the simpler calculations performed in the 

multiplication phase must be totalled correctly. This is often performed using a traditional 

addition algorithm which adds like place value parts. Kilian et al. (1980) found that, when 

the traditional algorithm was used, errors in addition calculations were low (9%), but 

‘carrying’ mistakes accounted for approximately a quarter of all errors (24%). One of the 

algorithms analysed does not use a traditional addition algorithm. Instead, the products of 

the simpler multiplication steps are ordered without explicit reference to place value. See 

the line algorithm in Results for a detailed description of this kind of addition phase. 

Method 

West (2011) provided a description of nine alternative multiplication algorithms. In 

this paper we will discuss three algorithms. These three algorithms (Line, Lattice and Area 

multiplication algorithms) were selected because they make use of structures in their 

physical layout. These alternative algorithms are compared to the partial product algorithm 

commonly taught in Australian schools. Each algorithm will be compared to each other 

when used to solve the same problem. A 2-digit multiplied by 2-digit number problem was 

selected (34 × 26) with the numbers being chosen using a random number generator. 

During the multiplication stage of each algorithm, initial analysis will involve 

determining which simpler calculations this multiplication problem – 34 × 26 – is broken 

into. The next analysis involves identifying whether any of these calculations need to be 

performed mentally or can be offloaded to the structure of the algorithm. 
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Place value in the multiplicative stage of each algorithm has been categorised as either 

‘suspended’ or ‘not suspended’. If an algorithm suspends place value, then some cognitive 

work must be performed in order to reinstate place value position after simplified 

calculations have occurred. Algorithms which suspend place value have then been 

categorised according to whether reinstating place value position needs to be performed 

mentally or can be offloaded to the structure of the algorithm. 

Completeness has been analysed in terms of whether this needs to be maintained 

mentally or whether this cognitive task can be offloaded to the structure of the algorithm. 

There are two classifications that have been used in relation to the addition phase of 

each algorithm. Addition phases either employ the traditional addition algorithm or they 

employ a non-traditional addition algorithm which does not add products in place value 

parts (described in the next section). 

Results 

In the following section, each alternative algorithm is analysed separately before these 

separate analyses are compared in Tables 1 and 2. 

 

 
Figure 2. 34 × 26 using the partial product and area model algorithms 

Partial Product Algorithm 
Part A of Figure 2 shows the partial product algorithm broken down into two phases – 

the multiplicative phase and the additive phase. In the multiplicative phase, four single-

digit numbers must be multiplied separately. These calculations must be performed 

mentally. Place value is suspended when these calculations are performed. When recording 

each partial product, place value must be tracked, mentally, by the student. In particular, 

when ‘3’ is multiplied by ‘2’, students must mentally track that this is really 3 tens 

multiplied by 2 tens, and thus, the product is 6 hundreds. A significant amount of mental 

cognition must be employed to track that the product of digits in the second column need 

to be recorded in the third column. Hence, this algorithm has been classified as requiring 

mental cognition to maintain place value. Completeness is also only partially helped by the 

structure of the algorithm. The common approach is to start with the right most digit of the 

bottom row number and multiply this by the digits of the number on the top row starting 

from left to right. However, there is no element of the structure of this algorithm which 

enables students to visually recognise if they have missed a step. Hence, this aspect of the 

cognitive work of using the algorithm has been coded as requiring mental cognition. 

In the addition phase, the column structure of the algorithm allows each place value 

part to be totalled separately. When the second column results in a total greater than 9, 

‘carrying’ is used. Then students must recognise the need to move into the next column, so 

that 18 tens is renamed as 1 hundred and 8 tens. 
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Area Model Algorithm 
Part B of Figure 2 shows the area model algorithm. An area model is used to model the 

problem and the resulting rectangle is partitioned into four separate areas. Place value parts 

are used to partition the rectangle so that the side of the rectangle which is 34 long is 

separated into two segments which are 30 and 4 long respectively. The area of each of the 

four partitions is arrived at by multiplying 4 × 6, 6 × 30, 20 × 4 and 20 × 30. While this 

entails multiplication of more than a single-digit number, the 2-digit numbers do not 

contain a non-zero digit in the ones-digit position, which reduces the difficulty of the 

calculation. This enables calculations to be performed mentally. When this algorithm is 

used, place-value positions in the multiplicative phase are maintained throughout. 

Furthermore, the structure of algorithm provides a visual representation of the magnitude 

of the products of multiplication – the 30 × 20 partition looks considerably bigger than the 

20 × 4 partition. As partial products are recorded in each of the four partitions of the 

original rectangle, completeness is offloaded to the structure of the algorithm. In the 

addition phase, a traditional addition algorithm is used which has the same processes as a 

partial product algorithm. 

Line Algorithm 
Figure 3 shows the line algorithm. The horizontal lines represent 34 as there are 3 lines 

grouped at the top and 4 lines grouped at the bottom. The vertical lines represent 26 (2 

lines to the left and 6 lines to the right). Diagonal lines (dotted in Figure 3) are used to 

create three areas. The number of line intersections in each area are then counted and 

totalled. In the top left region, there are 6 line intersections, 26 intersections in the middle 

region and 24 in the lower right region. 

 
Figure 3. 34 × 26 using the line algorithm 

This algorithm allows the problem to be solved without using mental multiplication 

calculations. A student could use a ‘count all’ strategy to total the number of line 

intersections. Hence, the structure of the algorithm enables 34 to be multiplied by 26 

without having to mentally perform any multiplicative calculations. Place value is 

suspended and does not need to be tracked mentally. Completeness is supported by the 

structure as long as all line intersections are counted. 

In the addition phase, the three products (6, 26 and 24) need to be combined. Starting 

with the right-most total (24), digits not in the right-most position are added to the number 

on the left. Thus, the ‘2’ digit in 24 is added to 26 to get 28, the ‘2’ digit in 28 is added to 6 

to get 8. This produces the number 884 as the final product. In this phase as well, the 

student does need to keep track of place value parts because of the structure of the 

algorithm. If place value is maintained in this algorithm, then the three products derived 

from this algorithm are 600, 260 and 24, and the addition phase of the algorithm combines 

these. However, the algorithm enables these products to be combined without having to 

mentally reinstate place value. 
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The Lattice Algorithm 
Figure 1 shows the multiplication and addition phases of the lattice algorithm. Like the 

partition product algorithm, four pairs of single-digit numbers are multiplied. The products 

of these calculations are recorded differently. When 2 is multiplied by 6 it is recorded in 

the grid where the tens-digit is recorded above the diagonal line and the ones-digit is 

recorded below (e.g. 2/4 for the total twenty-four). If there a product is less than 10 (e.g. in 

the case of 2 × 4), a zero is recorded above the diagonal line (e.g. 0/8).  

Calculations during the multiplication phase are performed mentally and place value is 

suspended. The lattice structure of this algorithm maintains the place value position of 

these digits so that they do not have to be maintained mentally. This structure ensures 

completeness without requiring any mental effort on the part of the student as all parts of 

the grid need to be filled. 

In the addition phase, the dotted arrows on Figure 1 indicate which numbers need to be 

added together. Following the diagonal lines of the lattice, there are four ‘diagonals’ that 

need to be totalled. When the second diagonal results in a total over 9 (8 + 2 + 8 = 18), the 

tens-digit is ‘carried’ to the next diagonal. Each diagonal maintains place value in a similar 

fashion to columns in standard addition algorithms, although zero digits are not needed to 

communicate place value position. 

Table 1:  

Calculations and place value in the multiplication phase of each algorithm 

Algorithm 

Calculation 

 

Place Value (PV) 

Mental Structure 
Suspend 

PV 

Maintain PV position of digits 

Mental Structure 

Partial Product Y N Y Y N 

Area Model Y N N N/A N/A 

Line N Y Y N Y 

Lattice Y N Y N Y 

Comparing Algorithms 
Tables 1 and 2 compare the four algorithms analysed. Each of the four multiplication 

algorithms analysed enable different aspects of the cognitive work of solving a multi-digit 

multiplication problem to be distributed differently between the environment and an 

individual’s mental resources. Multiplication calculations must be performed mentally with 

all algorithms except the line algorithm. Only the partial product algorithm requires 

students to maintain place value mentally – the structure of both the line and lattice 

algorithms allows this cognitive task to be offloaded while the area model does not 

suspend place value.  

Table 2 shows that all three of the alternative algorithms enabled completeness to be 

offloaded to the environmental structure of each algorithm and the line algorithm used a 

non-traditional approach to addition which enabled successful addition to take place 

without mentally maintaining place value position of digits. 
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Table 2:  

Ensuring all multiplication calculations are made and summary of the addition phase 

 Completeness  Addition phase 

Algorithm Mental Structure 

 Traditional PV part 
addition algorithm 

Addition algorithm 
without PV 

Partial Product Y N  Y N 

Area Model N Y  Y N 

Line N Y  N Y 

Lattice N Y  Y N 

Discussion 

Rather than catering to “students’ individual needs and styles” (Randolph & Sherman, 

2001) alternative algorithms – in this analysis – are posited to have a specific impact on 

students’ mental workload. The analysis presented suggests that this view is theoretically 

plausible and could be used to guide further investigation. The lattice algorithm, for 

example, may enable successful calculation of multi-digit multiplication without the need 

to mentally attend to the place value position of component calculations and completeness. 

While Carroll and Porter (1998) could not identify any obvious reason why ‘low 

achieving’ students would develop a preference for the lattice algorithm, viewing students’ 

use of algorithms as embedded cognition provides a theoretical explanation: if the lattice 

algorithm offloads aspects of the cognitive work of solving the problem into an 

environmental structure, students can successfully perform multi-digit multiplication with 

decreased cognitive load. 

If the use of algorithms – like the work of professionals in working environments 

(Kirlik, 2007) – is embedded, and students can use different algorithms to distribute 

cognitive work across both mental and environmental resources differently, then one may 

ask whether all algorithms are created equal; should all algorithms be taught to students; 

and what would warrant the use of a particular algorithm? Viewing algorithms through the 

lens of embedded cognition generates hypotheses which can be tested. If ‘low achieving’ 

students develop a preference for the lattice algorithm (Carroll & Porter, 1998), an 

embedded analysis of the algorithm would suggest that these students may also have less 

understanding of place value than students who use partial product algorithms. Students 

who prefer the line algorithm may also lack effective mental strategies for multiplication. 

Future research may be able to test whether such preferences for alternative algorithms 

correlate with specific mathematical difficulties of students. 

Through the lens of embedded cognition, the traditional partial product algorithm 

enables the least amount of offloading of cognitive tasks to the environment. Completeness 

and place value must be maintained mentally with limited structural support. Kilian et al. 

(1980) found that 56% of students’ errors using a traditional algorithm related to these 

procedural aspects (rather than calculation errors). While the partial product algorithm 

enables a multi-digit problem to be broken down into component calculations, there are 

many mental demands made when using the algorithm beyond calculations. Further 

research may be able to ascertain whether alternative algorithms could be used in a 

sequenced fashion, to enable the mental demands of the partial product algorithm to be 

approached gradually – in that the line algorithm could be used to introduce multi-digit 

multiplication algorithms (with a relatively small mental workload) before transition to the 
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area model algorithm followed by the partial product algorithm. Theoretically, the analysis 

presented in this paper would suggest that this sequence may represent a viable scaffolding 

of the mental demands required to use the partial product algorithm. While further research 

is required to test such a sequence, theoretically it may help students avoid the procedural 

errors Kilian et al. documented with the partial product algorithm. 

Conclusion 

An embedded view of cognition has been applied to four multiplication algorithms to 

assess how the cognitive demands of solving 34 × 26 can be distributed across both 

environmental and mental resources. Results suggest that algorithms differ mainly in 

relation to how place value and ensuring all calculations are made (‘completeness’) are 

supported by algorithms’ structures. This provides a plausible explanation as to why some 

students may develop a preference for particular algorithms as each algorithm requires 

different aspect of the cognitive work of solving 34 × 26 to be completed mentally. Thus, 

alternative algorithms may not be just a matter of individual style but may be used in 

specific ways to enable successful task performance. A traditional partial product 

algorithm offloaded the least amount of cognitive work to the environment and made the 

highest demands on mental resources of the algorithms analysed. Hence, further research – 

guided by a model of embedded cognition – may be able to identify how using alternative 

algorithms may address specific student errors relating to using traditional algorithms. 
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