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Having students address mathematical inquiry problems that are ill-structured and 
ambiguous offers potential for them to develop a focus on mathematical evidence and 
reasoning. However, students may not necessarily focus on these aspects when responding 
to such problems. Argument-Based Inquiry is one way to guide students in this direction. 
This paper draws on an analysis of multiple primary classes to describe core elements in 
Argument-Based Inquiry in mathematics.  

The inclusion of inquiry-based pedagogies into classroom mathematics teaching has 
the potential to engage students in mathematics in authentic ways (Fielding-Wells & 
Makar, 2008). Students engage with inquiry as they are supported to work with ambiguous 
and ill-structured problems (Makar, 2012); ill-structured problems being considered those 
which have no correct solution, may have multiple solutions, or have unclear solution 
processes (Eraut, 1994). An advantage of working with such questions is that:  

their inherent ambiguity allows for multiple interpretations of a question, a range of pathways, and 
numerous solutions with varying degrees of efficiency, applicability and elegance. This requires 
students to focus on decision-making, analysis and justification. Rather than a ‘correct’ answer or 
strategy, there is a claim which requires evidence, explanation and defense – in short, an argument 
(Fielding-Wells & Makar, 2012, p. 149). 

Blair (2012) describes a view of argumentation that essentially sees it as a form of inquiry 
in which argumentation is utilised to explore a problem and to arrive at a solution through 
examination of the evidence and grounds that can be employed towards solving the 
problem. By implementing such a model of argument, students may be explicitly focussed 
on obtaining evidence, using evidence to make a claim, and articulating how the evidence 
leads to the claim through reasoning. Thus, argumentation offers potential to purposefully 
direct students engaged in inquiry to focus on the discipline content, and the ways in which 
the discipline content can be used, to respond to a problem or dilemma.  

Argumentation in not new in mathematics, there is a great deal that mathematicians do 
that incorporates reasoning and argument. For example, mathematical proof must stand up 
to rigorous, critical, dialectical argument by other mathematicians and be open to argument 
as attempts are made to examine, generalise, extend, and simplify the proof. Another area 
of argumentation research in mathematics has been as it applies to procedure (see, for 
example, Goos, 2004; Yackel & Cobb, 1996). Here it is “the strategies used for figuring 
out, rather than the answers, that are the site of the mathematical argument” (Lampert, 
1990, p. 40).  

There is a third type of argumentation, one that would appear to have been the focus of 
less research and that is the use of argumentation to address authentic, ill-defined 
mathematical problems in which neither the procedural pathways nor the solutions are 
limited in terms of ‘correctness’; that is, inquiry (Anderson, 2002). This is the focus of the 
research described in this paper and which differs from the existing body of literature 
somewhat in that both the solution process and the answers are considered the site of the 
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argument. Hence, the term Argument-Based Inquiry (ABI) has been adopted to describe 
this view of argumentation. 

Argumentation 
Toulmin, Rieke and Janik’s (1984) seminal work on argument structure enables an 

argument to be identified by components of claim, grounds, backing, warrants, and so 
forth. However, such a structure focuses on the components of an argument rather than 
providing a focus on evaluating the logic or strength of their claim. A simpler model than 
that proposed by Toulmin et al. would appear to be indicated for children, such as the 
Claim-Evidence-Reasoning model devised by McNeill and associates (McNeill & Martin, 
2011; Zembal-Saul, McNeill, & Hershberger, 2013). This enables a more general focus on 
the core components of classroom argument. The claim and evidence components align 
with Toulmin et al.’s claim and grounds: claim being the conclusion that addresses the 
original question and evidence being the scientific data that supports the claim. In 
explaining their model, Zembal-Saul et al. (2013) maintain that the data needs to be both 
appropriate and sufficient to support the claim. The third component, reasoning, 
encompasses the warrants and backing; that is, the logic that enables the grounds to be 
used to establish the claim (McNeill & Krajcik, 2012).  

The Nature of Argumentation 
Various theories of argumentation can be found in the literature with Toulmin et al.’s 

(1984) classical work on argumentation structure forming a basis for most. For instance, 
van Eemeren and Grootendorst (2004) extended Toulmin et al.’s structural (product) 
approach to pragma-dialectical argumentation that incorporated the process of argument 
also. Lumer (2010) and Siegel and Biro (1997) proposed a model of Epistemic 
Argumentation, which distinguished itself through a focus on the strength and validity of 
an argument, based on epistemic criteria (Nettel & Roque, 2012) rather than structure and 
use of emotive devices.  It is this theory of argumentation that was adopted throughout the 
research described here: the rationale being that science (and mathematics) value accuracy, 
logic and verifiability over persuasive devices seen in other forms of argument. 
Furthermore, the ability to challenge the argument is offered on an epistemic level, giving 
potential rise to challenge about what is acceptable evidence and reasoning within a 
discipline (Simon & Richardson, 2009).  

Traditional ways of teaching do not provide a classroom culture that is necessarily 
conducive to the introduction of ABI practices and thus there are many practical 
considerations to developing such approaches. In order to facilitate the research 
undertaken, argumentation was introduced into primary classrooms that were already 
fluent in the use of inquiry-based learning (IBL) in mathematics. What signature elements 
of Inquiry-Based Argument can serve to guide children’s mathematical argumentation? 

Methodology 
The larger research study from which this report stems was conducted using Design-

Based Research; selected because this methodology entails engineering forms of learning 
and then systematically studying the learning within its context, which was ideal for the 
research purpose (Cobb, Confrey, diSessa, Lehrer, & Schauble, 2003).  
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Participants and Data Collection 
In total, five classes of students were engaged in Inquiry-Based Argumentation units 

with some carrying out one unit and others as many as three across the course of a year. A 
total of nine units were recorded in full from classes (at the Prep, Year 1, Year 3, Year 5 
and Year 7 levels) at a metropolitan government primary school in Queensland. This 
school is a relatively large primary school with approximately four drafts of each year 
level. At the commencement of the research, the school site had been part of an IBL 
research project for seven years and involved a number of teachers at the school. The 
teachers were all experienced with teaching using IBL; however, due to changing grouping 
over years some students were quite familiar with learning through inquiry whereas others 
had little or no experience. Teachers were provided with ongoing guidance and support; 
however, beyond a need for a Question-Evidence-Conclusion focus, the teachers were 
largely responsible for implementing their approach to the inquiry question as they chose.  

Data and Data Analysis 
A selection of videotaped units (approximately 5-10 lessons each) was analysed using 

a process adapted from Powell, Francisco and Maher (2003). In line with their approach, 
the lesson videos were viewed and logged, lesson-by-lesson, along with time stamps, 
excerpts of students’ work, and still shots of teaching materials to capture the essence of 
the lessons. Critical events, such as those that demonstrate a particular struggle or 
advancement in the inquiry were noted and transcribed in more detail. Logs were coded 
using adapted grounded theory (Corbin & Strauss, 2008) and this enabled cross 
comparison between the units for particular events and patterns in the development of the 
inquiry. In particular, commonalities and differences were highlighted in order to develop 
an overarching narrative of the ABI process. Four units that were felt to demonstrate deep 
engagement with ABI pedagogy were transcribed in full. For consistency of the story, all 
classroom illustrations provided are drawn from one unit: Biased Bingo (Year 3): a 
teaching unit designed around the game of addition bingo, which addressed the question 
‘What is the best card for addition bingo?’ In the game, all possible combinations of the 
sum of two numbers (1 to 10) were each written on a slip of paper and placed in a box. 
Children had a card consisting of a 5 x 5 array of self-selected numbers (their predictions 
of what will be called). In order to address the problem, they needed to decide on the best 
numbers they could place on their card. 

The purpose of the grounded coding was to enable the development of substantial 
codes to describe, name, or classify aspects of the study (Flick, 2009). The codes assigned 
were grouped into common themes and codes that were essentially duplications were 
amalgamated. These codes were clustered where appropriate into code categories and 
substantive categories and used to map themes and relationships.  

Results and Discussion 
The analysis undertaken illustrated four key components or threads at the most basic 

level of ABI; that is, that were consistent across all classes and ages. While more advanced 
components were also able to be identified in older classes engaging in more than one ABI 
unit, the essential and consistent elements noted are the focus of this paper. At the very 
simplest level, mathematical argumentation was characterised by students addressing of a 
purposeful inquiry question, the advancing of evidence which was used to form a claim, 
the justifying of the evidenced claim through epistemically acceptable reasoning, and 
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acknowledgement of context. While the elements are presented here sequentially, in 
practice the teacher drew attention to different components and the relationships between 
different components, as required. Each of these elements will be addressed in turn. 

Addresses a Purposeful Inquiry Question 
In order to present an argument, the students first required a question they could 

address. Questions were variously provided by the teacher, by the students or, most often, 
in a vague and unrefined way by the teacher and then refined by the students with teacher 
guidance to a topic that was mathematically researchable. The excerpt below illustrates a 
teacher working to help the students unpack the question being posed. 

Mrs T:  Can you create a bingo card with the BEST chance of winning? What does 'best' 
mean? 

Jess: The best chance of winning doesn’t mean like every number that gets pulled out that 
one person will always get that number. It means that like most of the time when you 
pull out a number that that person will have that number. If they have a like a good 
bingo card they have worked out like how many of each number they need to have to 
have a really good chance of winning. 

[unidentified  
student]  The best chance of winning is the most likely chance that it is going to get called out. 

The inquiry question in this instance was posed by the teacher but in such an ill-
structured way that the students needed to engage with it determine the meaning. The 
question need not be posed by the teacher. In another unit, a student’s question was 
adopted after it was posed spontaneously in class. Students are capable of formulating their 
own inquiry questions even from a young age, although research indicates there is a need 
to teach students how to pose their own questions with a focus on what makes a good 
question (Allmond & Makar, 2010). While this may be time consuming it does more 
closely match authentic practices and teaches students an important skill – how to 
mathematise a problem so that it can be addressed. 

The word purposeful has been added to the element addresses a purposeful inquiry 
question. In this instance, a purposeful question is deemed one that seeks to address a 
genuine problem. By purposeful, it is meant that the question has a genuine reason for 
being asked. Often when students are provided a question, the teacher already has a known 
answer.  Because of this, even if the question is open-ended, students may not engage 
purposefully as they have no real need to persuade their audience (the teacher) of the 
answer or a method (Sandoval & Millwood, 2007).  

Advances Evidence to Enable the Forming of a Claim 
In scientific/mathematic argument, evidence or data is sought and then attempts are 

made to make sense of it and to make a claim based on all the evidence, both supportive 
and contradictory (Sampson & Clarke, 2006). This is distinct from the role that evidence 
may have in advocative argument, where a claim is made and then evidence is presented in 
order to support or add weight to the claim. In ABI, the teacher needs to focus students on 
the obtaining of evidence to make a claim. 

Mrs T: ...  I wanted to just come back to our question, because our question was ‘What Bingo 
card would give you the best chance of winning?’ …? Who can remember what you 
were doing yesterday and what you were hoping to achieve, or what were you trying to 
find out? 

232



Fielding-Wells 

 

Gen: If other numbers other than 12 would be pulled out mostly. 

Mrs T: Yes. Some people said, ‘Wow, another 12 another 12’ and so everyone decided ‘OK 
12 comes out the most’ but we weren't really sure of that, so you guys had to find? 

Students: Evidence. 

Mrs T: So you went off to find some evidence for that [writes evidence on whiteboard]. To 
prove that. So, while you were finding evidence, what did you find? What did you 
discover along that track? 

Byron: That 18 was second most popular … 

Gen: That um if you did 12, there was eleven of them. And when we did 11 there was ten. 
And you keep taking 1 from each one and then it makes how many ... 

Mrs T: I am hearing people saying, oh well actually, 10 is the most common. And I heard 
someone say, ‘No, 11 is'’ And Bethany saying, ‘12’ … 

So now that you look at your book, can you tell me, from the evidence that you have 
got there, which number, definitely, and I mean definitely. Can you prove to me, 
which number is the most common? Or numbers. You can Jasmine, from your 
evidence there could you show me, and could you prove it to the rest of the class? 

In this instance, the teacher is focussing on the students need for evidence to support 
their claims: one commonality throughout all the units observed was the repeated and 
consistent focus of each teacher to bring students’ attention back to the need for evidence 
in order to lead them to a claim, but also the need to represent the evidence in ways that 
assisted students to see patterns in their evidence that would lead to a claim. 

It was evident throughout the units analysed that students needed to envisage the 
evidence they could use to address the problem, plan to obtain that evidence, organise or 
represent the evidence, and then interpret and analyse it in order to make and support a 
claim.  

Justifies the Claim through Epistemically Acceptable Reasoning 
Students need to use reasoning that is based on evidence to justify the making of a 

claim. There is potential for the connection between evidence and claim to be omitted, 
largely because the connection is either thought to be implicitly understood, or is left 
unaddressed unless challenged. However, this does not meet the purposes of IBA in 
mathematics, as the reasoning is the site of the actual mathematical understandings, 
connections, proofs, or concepts. In one class, the students engaged in three units over the 
year, and, by the end of that period, were explicitly stating their reasoning in terms of the 
mathematical underpinnings. However, this was not a stage typically reached by classes 
engaging in only one unit. Thus, a more typical response is 
shown from the Year 3 class:  

 
While the suggestion here is that the signature components for argumentation should 

include claim-evidence-reasoning (McNeill & Martin, 2011; Zembal-Saul et al., 2013), it 

Because [ I ?] said 12 are 
the most popular number 
because 11 has 10 chances 
10/100, 8 has 7 chances of 
winning 7/100, 12 has 9 
chances 9/100 
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is only essential that the teacher be able to recognise these components, particularly in 
younger students, and that these components may be elicited, for example verbally, 
pictorially, diagrammatically, or concretely. However, to have the students accustomed to 
providing evidence for and justifying their responses even at an earlier age would likely 
position the students for more formal learning and reasoning at a later time. 

Reflects the Context 
The final element is the necessity of the claim, evidence, and reasoning to reflect the 

question context. In a unit contextualised outside of mathematics, there should be a 
reflection of what the student’s response means in the context. While the claim would 
reflect the context and the reasoning would require a mathematical basis, the evidence may 
be constrained or guided by the context and this could potentially influence the evidence at 
several stages: envisaging (How many trials of the Bingo should we make?) and 
interpreting (What does the evidence mean in light of the context? How can anomalies be 
interpreted in light of the context?). 

Justine: I keep losing on a 10. 

Mrs T: This is an interesting comment. Laura says ‘I keep losing on a 10’. How many times 
have you lost on 10? 

Justine: Two. 

Mrs T: So if this was happening as you predicted and as you expected, do you think Laura 
could have been winning? 

Students:  Yes. 

Mrs T:  Because she’s been waiting for a 10 and it hasn’t happened although I would have 
predicted, or I would have expected that we would have had more 10’s. So would her 
choosing two 10’s have been a reasonable sort of assumption to make?  Do you think 
that would have been a good idea when she was making her card? 

Students:  Yes. 

In this instance, these students have determined that ten is one of the highest frequency 
outcomes. However, in playing the game, ten has not been drawn as often as expected. The 
students recognise that is brought about through chance and accept that Laura has still 
designed a card that has a good chance of winning. Context plays an important role in the 
interpretation of mathematical evidence. In this instance, we see that students are able to 
take the numbers as drawn (experimental data) and explain why it doesn’t behave as they 
predicted. According to Borasi (1992): 

Mathematical applications require not only good technical knowledge but also the ability to take 
into account the context in which one is operating, the purpose of the activity, the possibility of 
alternative solutions, and also personal values and opinions that can affect one’s decisions. 
Unfortunately, none of these elements is usually recognised as relevant to mathematical activity by 
people who have gone through traditional schooling. (p. 160) 

Conclusion 
The purpose of this research was to begin to identify some key components of 

Argument-Based Inquiry as it might take place in primary mathematics classes. Four 
components that appear essential are suggested: the addressing of a purposeful inquiry 
question; the advancing of mathematical evidence to enable a claim to be made (in the 
illustrated unit the students’ bingo cards formed the basis of their claim); the justification 
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of a claim through epistemically acceptable reasoning; and, the acknowledgement of 
context. It is suggested that these components are likely present, or a requirement, of all 
ABI in mathematics. However, at the level of the youngest children, there may not be an 
explicit acknowledgement of claim, evidence, reasoning, and context by the children. 
However, it is essential that the teacher can identify these components and guide students 
towards there development. 

Argumentation structures and practices offer the means to focus students on the need 
for quality evidence and thus encourage students to focus deeply on mathematical content. 
Much of the work with argumentation that has already occurred in mathematics is 
associated with justification of procedural choices to arrive at a correct answer, or on the 
defence of the answer itself. By contrast, mathematical ABI offers the opportunity for 
students to engage in ill-structured, ambiguous problems that have neither a defined 
solution path nor a single correct answer.  Thus, while this is only a small beginning, there 
appears to be potential for argumentation to be effective in deepening student focus on 
developing mathematical evidence and reasoning in inquiry-based learning environments.   
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