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Mathematical knowledge in classrooms is mediated through the use of both technical and 
informal language. This paper is a report of a study of the language use of teachers as they 
examine students’ work and discuss teaching for the topic of fraction operations. This 
provides a window on their pedagogical content knowledge and also on the way in which 
language is used to make sense of mathematical knowledge, either personally or for 
students. It was found that some mathematical knowledge appeared to be taken as 
understood, perhaps because the expected words were used.  

Introduction and Background Literature 
Recently the author was reading some material that reported on teachers’ solutions to a 

particular class of proportion problems. What was striking about these solutions, which 
came from a country different from her own, was the consistency of the terminology and 
representations used by the teachers as they presented their mathematical reasoning. In 
addition, this consistency of language seemed to give the teachers a greater capacity to 
articulate the mathematics: they were fluent in the way they used the terminology in 
support of their solutions. Their content knowledge of mathematics appeared to be 
enhanced by this precision of language, and the language was used effectively in support 
of their further discussions about how they might help students with similar problems. This 
suggests that the terminology and representations used by teachers might give insights into 
their pedagogical content knowledge (PCK). 

There are a number of frameworks associated with the knowledge for teaching 
mathematics, and they categorise that knowledge in slightly different ways. The 
knowledge quartet of Rowland, Huckstep, and Thwaites (2005) is a little different from 
some of the other frameworks, in that it views certain aspects of knowledge dynamically. 
The more static component—foundation—includes “the meanings and descriptions of 
relevant mathematical concepts” (p. 265), which includes relevant terminology. One of the 
more dynamic knowledge-in-action aspects—transformation—also makes reference to 
language, and considers how “the teacher’s own meanings and descriptions are 
transformed and presented in ways designed to enable students to learn it” (p. 265), with 
the acquisition of essential vocabulary explicitly mentioned as part of the teacher’s work. 
The Hill, Ball, and Schilling framework (2008, p. 377) for mathematical knowledge for 
teaching highlights common content knowledge, which includes terminology, although it 
might be argued that some terminology (e.g., the use of the word whole with respect to 
fractions) is really only used by teachers, rather than being in general mathematical use. 
Finally, the PCK framework of Chick, Baker, Pham, and Cheng (2006) identifies at least 
two components that allude to language use: knowledge of representations (which might be 
construed to include language, since language is used to signify and represent ideas), and 
knowledge of explanations, which requires use of appropriate language.  

Boero, Douek, and Ferrari (2002) wrote about the role of natural and symbolic 
languages in mathematics, and assert that “only if students reach a sufficient level of 
familiarity with the use of natural language in the proposed mathematical activities can 
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they perform in a satisfactory way” (p. 242). They also highlighted the teachers’ role in 
increasing students’ linguistic competencies, including in discussing solutions. Boero et al. 
discussed language as a mediator between mathematical objects, properties, and concepts 
and the development of theoretical systems, by which they seem to mean a connected 
conceptualisation of bigger mathematical ideas (such as rational numbers and operations 
in the case of this paper). In addition, they highlighted the role of language as a tool for the 
validation of statements.  

The area of fractions is one of the first mathematical topics that moves beyond the 
concrete arena of natural numbers, where operations are readily visualised and described, 
often with words that are part of everyday language. With fractions come new technical 
words, such as numerator. The conceptualisations of part-whole relationships and 
operations such as addition and division must be mediated through language use. In their 
seminal chapter on rational numbers Behr, Harel, Post, and Lesh (1992) explore the 
complexity of the domain, and highlight the idea of a unit”. When a fraction is defined in 
relation to a whole, it requires the conceptualisation of new units, namely the individual 
parts of the whole determined by the denominator. Thus, in the fraction 4/5, we must think 
of 1/5 as the unit (determined by creating 5 equal pieces from the whole), and consider 4 of 
these units. Simultaneously interpreting the information supplied by the denominator and 
the numerator is required in order to see a fraction as a single quantity. A complete 
understanding of the domain of rational numbers requires, among other things, 
understanding of how fractional quantities operate on other quantities and how we compute 
efficiently with such quantities (including finding valid algorithms).  

Ma (1999) found that primary teachers from the United States (US) and China varied 
in their capacity to make sense of, for example, fraction division. In giving explanations of 
their reasoning, the Chinese teachers seemed to have consistent terminology with which to 
refer to the components, operations, and procedures (e.g., referring to quotient and dividing 
by a number is equivalent to multiplying by the reciprocal), whereas the US teachers were 
less consistent and, indeed, unsure about the language (e.g., change them into sync, flip 
over and multiply). In addition, the Chinese teachers could more often provide 
mathematical reasons to justify the processes used. 

With this in mind the present research examines the language use and mathematical 
reasoning made evident in teachers’ discussions of students’ work with fractions. 
Specifically, it looks at the consistency of language and the way in which the mathematical 
ideas inherent in the terms and operations were discussed and justified. 

Method 
Data were gathered during focus group discussions involving some invited experienced 

teachers and the researchers (including the author, and colleagues from the Powerful 
Knowledge project of which this study was a part). There were primary and secondary 
focus groups sessions with around four to five teachers each in both Tasmania (Tas) and 
New Zealand (NZ), and a session with four primary teachers in Victoria (Vic). The 
teachers were purposely selected, and were known to the researchers as having an interest 
in mathematics teaching. The focus groups were intended to explore the knowledge that is 
brought to bear in teaching mathematics, and to provide an opportunity to access the tacit 
and explicit knowledge on which teachers draw in the act of teaching. 

The stimuli for the focus group discussions were items covering a range of school level 
topics and pedagogical content knowledge issues. The researchers presented items in turn, 
and discussion ensued about the nature of and responses to the situation. The intent was to 
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explore the kind of knowledge that is needed for these situations, rather than to gauge any 
or all of the teachers’ capacities to respond. Because the nature of knowledge for teaching 
mathematics was the focus of the data gathering, the researchers themselves were not 
independent of the discussion and contributed to the conversations and, thus, to the data. 
Discussions were audio-recorded and later transcribed.  

Two of the items used with the focus groups have been selected for analysis for this 
study, both coming from the domain of fraction operations. The task shown in Figure 1 
was presented to the New Zealand and Tasmanian primary teachers only, and concerned a 
misconception that is reinforced by the child’s choice of representation. To determine an 
appropriate response to the student’s ideas, the teacher might choose to draw on other 
alternative representations (as suggested by some of the options in the question in Figure 
1), or may choose to work with the child’s self-selected representation. There are 
advantages and disadvantages associated with each of these approaches (see Chick, 2011).  

 
A	
  student	
  says	
  that	
  1/4	
  +	
  1/4	
  is	
  2/8.	
  She	
  uses	
  counters	
  to	
  show	
  this	
  as	
  follows:	
  

	
  

Given what the student has just shown you, which of the following representations of 1/4 + 
1/4 is most likely to help her to see that 1/4 + 1/4 = 1/2? 
	
  
 
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  

Figure 1. The modelling fraction addition item. 

The second item, shown in Figure 2, was presented to the secondary and Victorian 
primary groups, and involved a student’s computation of the quotient of two fractions, 
obtained by using an alternative to the standard invert-and-multiply algorithm.  
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When	
  asked	
  to	
  describe	
  how	
  they	
  determined	
  !
!
÷ !

!
	
  

	
  
	
  

a	
  student	
  wrote	
  the	
  following	
  on	
  the	
  classroom	
  whiteboard:	
  
	
  
	
  
	
  
	
  
	
  
	
  

Figure 2. The division of fractions item. 

The transcripts of the focus group interactions were examined to investigate the 
mathematical language used when discussing the issues associated with these teaching 
situations. In particular, the key foci for the analysis were: 

• commonalities and differences in language across individuals; 

• strengths and inadequacies in language use;  

• the extent to which language aligned well with the content under discussion; and 

• the extent to which language was used to address mathematical issues implicitly 
and explicitly. 

Results 

Modelling Fraction Addition 
One of the key issues underpinning the fraction addition situation is the identification 

of the whole. This terminology came up regularly in conversation, almost always as whole 
but once as unit of analysis.  

… if we've already talked about our understanding of fractions is, “How many equal parts make that 
whole, so how many do you need to make that whole? And what part of our fraction tells us how 
many equal parts make the whole?” [NZ, Primary] 

I like that we have to move away from counters because in some ways the counters are talking … 
what’s the unit of analysis. [Tas, Primary] 

In the situation illustrated in Figure 1, the student does not appear to have 
misconceptions associated with a specific fraction of a given whole, although there was 
some initial doubt about this in one focus group, after one teacher had suggested that the 
student needed more experience with the idea of a “quarter of a group”. Another teacher 
counter-argued that the student’s basic conception of a quarter was sound, saying “she has 
actually represented … one counter out of four … she sees that one out of four is … it’s 
working with four counters as a whole, and here’s the one”. The specific issue associated 
with the misconception illustrated in Figure 1 is that, in order to be added, the two quarters 
and their sum must be represented and conceptualised in reference to the same whole. This 
was not always clearly articulated among the teachers who considered the situation, and 
the first extract below actually preceded the push to focus on the basic conceptualisations, 
with the concluding comment about there being two groups not followed up at first.   
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She’s got two wholes here … but I think I’d have to go right back to the beginning of fractions with 
her … yeah, forget about the adding, go back to a quarter of that, of one, and then a quarter of 
another group and so that you can transfer the quarter of the group to here, and realise it’s a quarter 
of another group of what she’s done. [Tas, Primary] 

She doesn’t catch on that four in one quarter and eight in one-eighth is [in reference to] the same 
one whole. [Tas, Primary] 

The second quote above, which arose later in the conversation among the Tasmanian 
teachers, gets to the heart of the matter but without specifying that the problem of the 
identification of the whole even applies with the original two quarters which were not 
shown with respect to a common whole.  

Although it was intended that the focus group discussion should address Figure 1 
(while also allowing this to be a springboard for other discussion), the New Zealand focus 
group spent some time discussing teachers’ experiences with their own students’ work. In 
so doing, they discussed aspects of the role of the whole. For example, one teacher told of 
the way students discussed the equivalence of mixed and improper fractions, and another 
described a student’s approach to showing that one-third cannot be the same as three-
eighths. In these accounts, the discussion of the whole and fractions was fluent and correct. 
The problematic nature of the whole in Figure 1 was hinted at only once, however, in the 
following.  

If a child said to me, “Well, here’s my whole” … you know, but then you’d be saying, “Well, what 
fraction is that? If that’s your whole, what’s your fraction?” You know, “What’s the fraction?” so, 
“Really is it a quarter plus a quarter?” … So it’s making sure that they really understand, that you’re 
on the same wavelength in what you each consider the whole to be. [NZ, Primary] 

In this case, if the words are referring to the need for a consistent whole—and it is not 
entirely clear that they are—then here the language has not been explicit about the 
mathematical details of the problem. However, two of the other teachers concurred with 
the statement, suggesting that some aspect of this contribution was understood and 
received agreement. This hints at some taken as understood common understanding held 
by the teachers, but the lack of clarity in the language begs the question of whether or not 
the same understandings were actually held.  

Division of Fractions 
In the division of fractions scenario shown in Figure 2, the student’s computation 

resembles aspects of the addition algorithm, in that a common denominator and resulting 
equivalent fractions are found for the two fractions prior to continuing with the division 
process. The final answer is correct; the issue is whether or not the student’s method is 
valid, and, if so, on what grounds.  

On seeing the student’s solution, one of the Victorian primary teachers seemed to be 
distracted by the seemingly incorrect use of common denominators.  

Very common, see it all the time, a mixture of algorithms that they’ve learnt, looks like the 
algorithm of changing the denominators, and then [indiscernible] algorithms, numerator to the 
numerator, denominator to the denominator, so it’s just a mix up of things that they’ve got in their 
head going on, and they’re just applying them … randomly. [Vic, Primary] 

Here the familiar aspects of one algorithm in a context different from its usual 
application appeared to lead to an assumption that the student’s work is incorrect. The 
phrase “the algorithm” may suggest the teacher believed in an authorised way of doing 
things (this is speculative, but it is known that some people view the standard algorithm as 
the correct way of solving a problem). There was no explicit use of language associated 
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with equivalent fractions although this idea is, perhaps, implicit in the phrase “changing 
the denominators”. The use of the words “numerator” and “denominator” in the latter part 
of the quote seemed to be in reference to actions/changes that are not clearly specified; the 
use of the word “randomly” at the end suggests that the teacher thought that the student’s 
actions are muddled rather than purposeful. There was no disagreement with this 
interpretation from the other teachers in the group, and the next phase of discussion turned 
to whether or not fraction division was part of the primary school curriculum.  

The use of a common denominator was also disconcerting for the Tasmanian 
secondary teachers, with one saying “It looks like to be they're confusing it with the 
addition algorithm,” but some at least recognised that the answer was correct. As the 
following extracts show, the teachers wanted to have the student explain the thinking 
behind the solution in order to discern the student’s rationale. It is, however, ambiguous as 
to whether or not any of the teachers thought the approach was valid and applicable more 
generally. Although the words numerator, denominator, common denominator, and 
algorithm, were used correctly in general, they seemed to be used superficially and the 
deeper meanings were not considered in any attempt to explain and justify the student’s 
valid approach.  

Well, firstly, I would ask them why they did what they did. You know, I think that’s really 
important that kids understand how to do something, why it works and when you use it. And in this 
case I am intrigued that they've got the right solution by not the standard algorithm so I would ask 
them why they did it like that … and then engage them in a conversation about, "Let’s weigh up 
some of the advantages and disadvantages of the different strategies you’re looking at now." And 
see if they would actually change their mind about what they’ve done there. [Tas, Secondary] 

Later in the discussion this teacher was able to articulate more about what was going 
on mathematically, but there was still much that was implicit in the explanation.  

If this kid knew why they were doing that and they explained it in a way that makes sense to me, I 
want to add that to my library because in many ways it makes more sense than what we teach them 
because it is linked and connected to the addition and the subtraction one quite well because if you 
actually do the eight divided by nine and the twelve divided by twelve … so you’re nearly there. 
[Tas, Secondary] 

The first of the following teachers suggested that the student thinks you can “lose the 
twelves”, but did not examine if there are mathematical reasons that make this a valid step. 
The vanishing twelves, from the second line of the student’s solution to the third, was a 
point of concern for the other teachers, too, expressed in different ways. 

You’d still have to ask why because maybe that’s not … there's something else is going on, that you 
can go about, you know, maybe they just noticed that you lose the twelves or something when 
they've been doing it elsewhere. But you really have to ask them first what's happening. … If they 
continued on the 'correct' algorithm, putting over the common denominator wouldn’t have mattered. 
… I mean that’s the thing. I mean it wasn’t needed, but wasn’t incorrect, but there’s some reason 
they seem to think somehow you, once you put them over the common denominators you can forget 
the denominator. [Tas, Secondary] 

When I got through to here, I thought, “Oh! Clever kid!” like, you know how when we’re teaching, 
we’re teaching the algorithms and they’ve got to remember, “Okay, when I divide fractions, what 
do I do again?” and the recall of that. I find that in adding fractions they get under control putting 
over common denominators fairly well and I think they do that a lot in primary school too before 
they come into grade 7. I think this is really clever in that again, we’re using the same sort of 
thought pattern of putting it over a common denominator again. Where I would be asking questions, 
even though I’d still ask … why did you do that, like how did you get from at the second line to the 
third line? What happens there? [Tas, Secondary] 
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Yeah, assuming like that's over one, or we're having it over the same denominator means that they 
magically disappear or- that there is a lack of reasoning between those two steps. [Tas, Secondary] 

The disappearing twelves can, in fact, be explained intuitively by realising that twelfths 
are the units for each fraction. Since each fraction is expressed in terms of the same unit (as 
shown by the same denominators), then the quotient is obtained from the quotient of the 
number of units in each of the dividend and divisor (i.e., 8 and 9, respectively).  

The New Zealand secondary group also discussed asking the student to explain why 
he/she changed the fractions to equivalent fractions with a common denominator, with at 
least one misled by this out-of-place application of part of the addition algorithm. A few 
minutes later one of the teachers claimed that the solution was “Absolutely right. It’s a 
perfectly valid way to do it.” One of the teachers had had a student take a similar approach 
in class, and there was some extended discussion about the applicability of the method. 

T1:  I can't remember whether the student actually had the understanding or whether they 
just … but they were definitely using their prior knowledge of adding fractions. … I 
did a little bit more work on it myself, and um, I do use it sometimes, but it's a bit 
limited in its use, because the numbers have to work, but it is a valid method that's 
come out. … So using equivalent fractions, and then, … I think the student was 
saying, I think, … [they] were going eight divided by nine is, is, yeah, to get the eight 
divide, and twelve divided by twelve is one … However, it works, and I think when I 
did some more work on it myself, it does work, but you can get into a bit of a tangle. 

T2:  So it works for every whole [sic] number. 

T1:  Um, I don’t know. I think … 

T2:  I can’t see why it wouldn’t. … It’s just an algorithm. … 

Note that the word algorithm seems to have been endowed with an authority that 
implies that it makes things work, rather than as something that requires validation. Later 
the researcher interviewer tried to probe the deeper mathematical reasoning (“If we think 
of the multiplication algorithm for fractions, we multiply numerators, we multiply 
denominators  … So, if we’re dividing two fractions, why not … divide the numerators, 
divide the denominators?”) which was followed by some general discussion about setting 
up class explorations of the phenomenon, but again the discussion seemed to tacitly 
assume or agree with the method without confirming its validity. 

Discussion and Conclusions 
The teachers, for the most part, appeared to have a shared vocabulary with respect to 

basic fraction numeration and operations. There was some informality associated with the 
vocabulary on occasions (e.g., the phrase “numerator to the numerator, denominator to the 
denominator” used by one of the primary teachers, and “putting over a common 
denominator” by the secondary teachers), although there were no egregious errors of 
terminology. At times, however, some of the usage seemed to be taken as understood, in 
that teachers used some expressions that had the potential to be ambiguous in meaning, but 
there was an apparent assumption that they all understood what was meant by the terms 
(e.g., exactly which whole was meant by whole in the addition problem, and no one felt the 
need to question whether or not there was a reason behind the loss or forgetting of the 
denominator in the division problem).  

There was very little detailed articulation of the fundamental principles underpinning 
the students’ thinking. It may be that this assumption of shared meanings inhibits explicit 
examination of the underlying definitional mathematical meanings and implications. This 
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is not to say that single words that capture complex ideas are not powerful, but our 
familiarity with them might make it difficult to get back to and express the component 
foundational principles, and it is these that may be necessary in order to make sense of 
students’ work and help them develop better understanding. For example, it was striking 
that there was little talk about the way that the numerator and denominator quantify the 
value of the fraction, by defining the size of the unit components (as determined by the 
denominator) and the number of such units being considered (as given by the 
denominator). The teachers seemed to understand fractions and the meaning of the 
numerator and denominator, but did not ever articulate that meaning explicitly. 

In the discussion of the division problem, the meaning of division was completely 
taken as understood; the focus of the discussion was on computational operations and what 
could and could not be done with the fraction components and the operations, rather than 
on what it might mean for one fraction to be divided by another. It also seemed to be taken 
as understood—perhaps because the student had obtained the correct answer—that 
(a ÷ b) ÷ (c ÷ d) is equivalent to (a ÷ c) ÷ (b ÷ d).  

The mixed results seem to suggest that perhaps it is time to talk about the way we talk, 
and the language we use in teaching mathematics. When working with pre-service 
teachers, it may be that we assume some things are taken as understood. Maybe, as a 
consequence, we are not as precise about defining and being consistent with the language 
we model, nor give enough emphasis to how that language allows us to discuss 
mathematical meanings, nor appreciate that these meanings allow us to justify 
mathematical procedures.  
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