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This paper describes students’ developing meta-representational competence, drawn from 
the second phase of a longitudinal study, Transforming Children’s Mathematical and 

Scientific Development. A group of 21 highly able Grade 1 students was engaged in 
mathematics/science investigations as part of a data modelling program. A pedagogical 
approach focused on students’ interpretation of categorical and continuous data was 
implemented through researcher-directed weekly sessions over a 2-year period. Fine-
grained analysis of the developmental features and explanations of their graphs showed that 
explicit pedagogical attention to conceptual differences between categorical and continuous 
data was critical to development of inferential reasoning.  

The development of informal statistical reasoning has received increasing attention in 
mathematics and statistics education research and related curriculum development 
(ACARA, 2012; English, 2012; Makar, Bakker, & Ben-Zvi, 2011). Engaging children in 
fundamental aspects of data modelling includes structuring and representing data, 
identifying variation in data, making predictions and drawing informal inferences. Here we 
see synergies with science education where student-led investigations involve the process 
of investigation and scientific process, including the representation of changes in 
phenomena over time (Prain & Tytler, 2012).  

Background to the Study 
Recent studies on young children’s mathematical development have highlighted the 

importance of representations and tools to promote structural awareness and generalisation, 
albeit emergent, from an early age (Mulligan & Mitchelmore, 2009). Our studies have 
shown that structural awareness is an underlying feature of mathematical development that 
we identified as Awareness of Mathematical Pattern and Structure (AMPS), a construct 
which can be reliably measured. A longitudinal study of 5-6 year olds, Reconceptualising 

Early Mathematics Learning, evaluated a structural approach to early mathematics learning 
(Mulligan, English, Mitchelmore, & Crevensten, 2013). This study showed that the 
scaffolding of structured tasks over time can significantly advance the development of such 
mathematical processes as patterning and unitising, spatial structuring, multiplicative and 
pre-algebraic reasoning. The question remained about whether AMPS may play a 
significant role in development of meta-representational competence in data modelling. 

A new study, Transforming Children’s Mathematical and Scientific Development, 
integrated the idea of developing AMPS through student-led investigations in data 
modelling (see English, 2012; Mulligan, Hodge, Mitchelmore, & English, 2013). This 
study built on an aligned longitudinal study of Grade 1 students (English, 2012), which 
indicated that children as young as 6 years old can successfully collect, represent, interpret, 
and argue about the structure of data. In our new study, developmental features of how 
students represent data through the integration of mathematical and scientific investigations 
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(Prain & Tytler, 2012) were analysed. This paper describes examples of fine-grained 
analysis of core features of meta-representational competence, i.e., how students 
conceptualised and represented data through scaffolded learning experiences. In particular, 
we focus on the conceptual changes that were necessary for students to interpret and 
represent continuous data. 

Theoretical Perspectives 

Data Modelling 

Data modelling involves a number of inter-related components that enable the 
development of both conceptual and meta-representational competence. English (2013) 
proposed an adapted model of data modelling (Lehrer & Schauble, 2004) that originates 
with students’ initial questions and investigations of real-life situations. This leads to 
students realizing the need to generate and measure particular attributes of the data 
collected, and to organize, structure and represent that data in meaningful ways. 
Developing concepts of informal inference and variation can emerge from these 
investigations (Lehrer & Schauble, 2005; Makar, Bakker, & Ben-Zvi, 2011; Watson & 
Fitzallen, 2010). The model highlights conceptual and meta-representational competence as 
inter-related but individual components that play a dynamic role in the modeling process 
(English, 2013). What we need to consider in the analysis of young students’ 
representations of data is the symbiotic nature of that interrelationship. English describes 
this as “tightly interactive… rather than rigidly sequential” (p. 69).  

Structural Development 

The analysis of students’ graphical representations has been described as increasingly 
sophisticated stages of development (Prestructural, Unistructural, Multistructural, and 
Relational) ranging from simple showing attributes, methods of displaying data, to 
understanding relationships and variation (Watson & Fitzallen, 2010). Similarly, a 
structural approach based on the construct of Awareness of Mathematical Pattern and 
Structure (AMPS) can be applied to the analysis of students’ development of data-
structuring skills (see Mulligan & Mitchelmore, 2009). Students’ AMPS can be described 
by identifying common features of underlying structures in their representations. For 
example, our data has revealed the importance of representing intervals and constructing 
scale. 

 In our earlier studies (Mulligan, English, Mitchelmore, & Crevensten, 2013), the 
notion of equal-sized units was found to be critical to the construction of scales necessary 
for representation on number lines, measures of length, area and coordinates. The vertical-
horizontal structure of graphs is identical to the structure of a rectangular grid/array and 
includes ideas of congruence and co-linearity. Students with a good understanding of the 
number lines and the rectangular grid structure may therefore be able to acquire graphing 
skills more quickly than others. Allowing young students to create their own pictographs 
initially, without scale, was a basis for developing concepts of attribute, frequency and 
variation, to which they could later add scale. 
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Method 
Participants were 21 students in an academically selective Grade 1 class, all male, of an 

independent school in an Australian capital city. These students were followed for 22 
months from the beginning of Grade 1 through to the end of Grade 2. At the beginning of 
Grade 1 (February), the students ranged in age from 6 years and 1 month to 7 years and 10 
months (mean 6 years and 6 months), following their participation in PASMAP during 
Kindergarten. Students came from high socio-economic backgrounds and a range of 
cultural/ethnic groups. 

As measures of students’ high ability, the researchers administered the Peabody Picture 
Vocabulary Test, 4th edition (PPVT4) (Dunn & Dunn, 2007) and the Raven Coloured 
Progressive Matrices (RCPM) (Raven, 2004) in October of their Kindergarten year. The 
median score on each test was at the 95th percentile. Students were also administered two 
forms of the PASA interview at the beginning of Kindergarten and at the end of Grade 1 
(Mulligan & Mitchelmore, in press). Broadly, the majority of students were classified as 
operating at the structural or advanced structural level at the Grade 1 interview.  

Data Collection and Analysis   

Students were placed in two learning groups: advanced (10 students) and less advanced 
(11 students). Each group was withdrawn from the regular class mathematics lesson for 
one hour per fortnight for four consecutive school terms (16 sessions) in Grade 1 and for 
two consecutive terms in Grade 2. The lead researcher and an assistant led the data 
modelling investigations based on the questions posed by the students. The classroom 
teacher was consulted about the planning and implementation of the program and was 
debriefed following each session. The students did not receive explicit instruction in their 
regular classroom program on data modelling or advanced graphical representations. Data 
collected were the scanned completed work samples, including students’ written accounts 
of their activities, and the researcher’s observation and evaluation notes taken during and 
after the learning sessions. (Collection of video data was not permitted). 

Student data were collated in a student profile. Work samples were analysed for 
features of AMPS and subsequently coded for level of structural development based on the 
features revealed. Analysis utilized iterative refinement cycles, comparing prior learning 
with new structural features (Lesh & Lehrer, 2000). Each work sample response type was 
coded by the first author, and checked by the senior research assistant; consensus was 
reached on all coding.  

Data Modelling Learning Sessions 

The learning program adopted a design-based research approach that enabled the 
development of particular forms of graphing to build effective data representation skills 
(Kelly, Lesh, & Baek, 2008). The learning sessions aimed to develop children’s interest in 
data modelling and build their skills in structuring data through representations based on 
the investigations that were part of their classroom program or those that spontaneously 
arose as a result of the children’s questions about everyday events. Such topics included 
Pets in our class, Birthdays, Holiday destinations, Daily temperature, Melting ice, Growth 
of chickens, and Growth of onions. Because these students had already highly developed 
literacy skills, they were encouraged to explain their representations in writing and to 
produce reports that emphasised the process of representing data as a ‘story’. Another 
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strategy was to allow students to pose questions about their graph that others could answer. 
The sessions began with opportunities to focus on data that may have already been 
collected and to represent and describe it as clearly as possible. Considerable time was 
devoted to developing skills of visualising and sketching data freehand, where students 
were given minimal instructions. Careful attention was paid to the shape of data sets and 
determining which types of displays best showed the variation in a data set. Various ways 
of representing the data were encouraged. An important learning feature was students’ 
ability to determine the most effective graph to displays these data. Students’ iterative 
refinement of their representations was particularly reinforced. Students were always 
presented with their previous representations and others’ attempts; some scaffolding 
enabled them to improve the clarity and mathematical detail and accuracy of their graphs. 
Students were required to justify why they had represented their data in particular ways.  

Students had already experienced the construction of two-way tables and picture 
graphs, with attention to coordination of vertical and horizontal grid lines to structure the 
data. Students were also familiar with using 2cm grid paper to assist in recording data as a 
vertical pictogram, a task that most students found easy (following each session students 
were required to reproduce their graphs from memory).  

Analysis of Students’ Graphical Representations 
An analysis of students’ graphical representations for three investigations is provided: 

Melting Ice, Growth of Chickens and Growth of Onions. In the first investigation, Melting 

Ice, students predicted how long it would take for an ice cube to melt when considering 
variation in temperatures. They posed further questions about what might happen if the 
melted ice was re-frozen. The students decided on the intervals of time that they would 
observe of the melting ice. They attempted to construct horizontal and vertical axes 
showing intervals of time and measures of temperature. They explained the process in 
writing. Figure 1 shows Franz’ interpretations that the ice would melt in a period of 5 hours 
indicating the rise and later the fall in the temperature. He poses new questions. 

 

Figure 1: Franz’ representations of ice melting over time. 
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Figure 2 shows Edward’s representation and report of his observations of the 
development of eggs to 10-day-old chickens. Edward uses pictorial icons on the horizontal 
scale to represent the stage of chicken growth. On the vertical scale he uses equally spaced 
points to indicate number of days (10), although in his report he understands that the total 
number of days for the chicken to hatch and grow is 21. 

 

Figure 2: Edward’s representations of chicken growth over time 

Edward’s icons depict increasing growth but he is not able to represent the interval of 
time showing growth within the egg (i.e., 21 days). While his graphical representation 
shows features of coordinated vertical and horizontal axes, the representation is 
incomplete. Thus we would categorise this as partial-structural level. An important 
inference drawn from this example is that Edward focuses on representing data that he 
could observe first hand (the actual growth of the chicken) but is not able to visualize the 
21-day period prior. He combines his personal observations (“Chicks are so cute”) with 
mathematical features. In terms of his understanding of the shape of a line graph, he is yet 
to understand the difference between the curved and straight line between each point.  

In Figures 3a and 3b, contrasting graphs show the growth of onions under two different 
conditions— in a cupboard and on a windowsill. No data were collected for three weeks 
(7-9) while the students were on holidays. Contrary to the boys’ predictions, the onion 
shoots grew longer in the cupboard. James uses grid paper to accurately depict the vertical 
scale (height of onion shoots in centimeters) and intervals of time on the horizontal scale 
(number of weeks). He draws pairs of column to show the two different conditions, 
labeling and colour-coding each column as red ‘c’ (cupboard) and black ‘w’. James has not 
yet developed a representational strategy for showing growth over time, and he uses 
strategies built up from his experience of drawing column and bar graphs. James is at a 
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structural stage for categorical data, but his understanding is still at an emergent level for 
representing continuous data.  

In Figure 3b, we see a more sophisticated attempt to graph the growth over time using 
two line graphs. Franz draws the horizontal axis first to show intervals of time over 12 
weeks. Although this is accurate, he starts the window condition data at week 3, ignoring 
that the two conditions began simultaneously. The vertical axis represents the growth in 
centimeters, for which a flexible tape was used when a ruler was found to be ineffective. 
Franz’ line graph shows no understanding of the difference between a straight and a curved 
line. Franz is in the partial-structural stage for representing continuous data, and it would 
be expected that both examples might have inaccuracies without the support of the grid 
paper. 

 

 

 

Figures 3a and 3b: James’ and Franz’ graphs of onion growth over time 

Discussion 
The first phase of this present study focused on the collection and representation of 

categorical data, e.g., drawing picture graphs of categories of Pets in Our Class. Students’ 
attempts to use one-to-one matching as a baseline were readily surpassed when they were 
able to conceptualise the need for a common scale. In the second phase, continuous data 
were collected and represented leading students to coordinate the horizontal and vertical 
axes. One of the important features was the students’ ability to conceptualise the meaning 
of the data, e.g., temperature changing over time. This required more integrated 
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understanding of variation and coordination of more than one element of structure at a 
time. In representations of continuous data, spatial structuring is necessary in visualising 
and organising equal spacing, coordination of axes, and scale. A common scale must be 
used for each graph, conveniently drawn on a vertical axis on the left hand side. This scale 
defines points, not intervals. Not all values on the vertical axis need to be labelled 
(numbered), and the points should be evenly spaced horizontally. 

More importantly, the development of conceptual understanding of the meaning of the 
data and the inferences that can be drawn from these data are critical. 

A crucial observation in terms of developing meta-representational structure was the 
students’ ability to notice and then coordinate all of the elements required for constructing 
each type of graph. In the case of Franz, we observe high-level AMPS, because he is able 
to integrate many aspects of structure simultaneously. His conceptual understanding of the 
meaning of the graph is also high.  We regard this as an example of the interrelatedness of 
the model described earlier (English, 2013). The idea of drawing a line to display change 
over time was built over time from experiencing real-life investigations in different 
contexts. From this representational view, the student can explain the shape and meaning 
of the data. In this process students may begin to see patterns and relationships in the data, 
a move towards informal inference.  

Our data support the findings of English’s (2012) analysis of representations in data 
modelling contexts. We found a diverse range of icons, including pictorial imagery, and 
structural features such as grid lines and symbols that reflected student’s individual forms 
of representation. Further, these students’ ability to explain their graphs and refine (re-
represent) their representations was impressive. This may have been masked if the graphs 
and the structural features had been provided for them. Challenging students to explore 
structural features and to discuss these with others of similar ability provided opportunities 
to co-construct meaning in what often became an increasingly motivating context for 
engagement in mathematics learning.  

Conclusions and Implications 
This second phase of the analysis of student-led investigations provided new evidence 

of students’ ability to develop statistical concepts alongside, or interrelated with meta-
representational skills. The development and coordination of meta-representational features 
promoted effective discussion in the group about what they were trying to convey in their 
graphs. The requirement to “explain and raise further questions about your data” supported 
a scaffolded pedagogical approach that centred on developing coherent ways of 
representing the meaning of the data. At times students reverted to, or integrated pictorial 
and idiosyncratic ‘fragments’ of their images of the data. We concluded, tentatively, that 
young, able students can develop critical developmental features of data modelling. This 
may have been difficult to observe and describe systematically with less able students. 
While this sample indicated a risk of underestimating young children’s capacity for meta-
representational competence, our findings do not permit generalisation. Nevertheless, we 
have been able to describe critical features that can be shaped into a pedagogical 
framework for data modelling. Implementation of curriculum priorities in statistical 
reasoning and associated teacher pedagogical learning may then be more easily achieved.  
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