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This article develops three different types of student explanations and studies how teachers 
respond to these. The data come from five classrooms at upper grade 5-7 (ages from eleven 
to thirteen) where all mathematics teaching for one week was filmed. These films were 
transcribed and student explanations identified. Through a close inspection of these, three 
categories of student explanations were developed. This enabled a closer study of how 
teachers respond. Typically, teachers respond by pointing out important details, by moving 
on without further comments, or by requesting students to provide more details. 

In order to understand classroom communication in some depth there is a need for 
detailed concepts. This article will look into the IRE pattern (Cazden, 1988) and its 
limitations before moving on to more detailed and precise ways to characterise 
mathematical discourse in the classroom. Particularly, different types of student 
explanations are described and how teachers respond to these.  

Theory 
Perhaps the most cited pattern of classroom discourse is the IRE pattern (Initiate-

Response-Evaluation) (Cazden, 1988). This describes a pattern where the teacher initiates a 
task or discussion, the student responds and the teacher evaluates. Franke, Kazemi, and 
Battey (2007) describe this pattern as a procedure-bound discourse with little emphasis on 
students’ thinking and explanation. This means that IRE looks like a rather teacher 
dominated pattern where the student answers only when given permission and where the 
teacher controls the process (by choosing what needs an answer and when). It also looks 
like a pattern where the teacher decides what is right and wrong and by this maintains a 
position of authority given by a role instead of given by mathematical arguments. The road 
is relatively short from this to patterns of teacher domination described in the research 
literature. One such is the Topaze effect, which occurs in the situations when the teacher is 
so eager to get a specific answer that he gives hints to such an extent that the original task 
can be totally changed, or at least so that much less knowledge is required from the student 
(Brousseau & Balacheff, 1997). Another similar pattern is described by Lithner (2008) as 
guided algorithmic reasoning. This is the case where the teacher makes all the major 
decisions related to the process while the student contributes with all the easy parts, such as 
simple calculations. A third and related pattern is funnelling, described by Wood (1998) as 
the teachers using questions to funnel the conversation. The result is that most of the 
students’ thinking is focused on trying to figure out the response the teacher wants instead 
of thinking mathematically. Topaze, guided algorithmic reasoning and funnelling all 
describe patterns where the teacher dominates the discourse by maintaining a tight grip and 
all could well fit into the IRE-pattern. These examples all could be used to argue that the 
IRE pattern is teacher dominated and consequently limits the students’ opportunities to 
learn mathematics. But Wells (1993) uses examples from the classroom to illustrate how 
much variation is hidden within the IRE pattern. Most importantly, this variation includes 
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qualitatively different initiatives, responses and evaluations. Also Cazden (2001) later 
emphasises that IRE includes more variation than first described. Consequently, within IRE 
there might be teachers dominating, but there also might be room for student contributions 
beyond answering teachers’ questions and beyond evaluations limited to correct or in-
correct. Whether the pattern can be described as IRE might not be the key to understanding 
qualities of a mathematical discourse. There are probably other factors that are more 
important. Mercer and Littleton (2007) argue that instead of looking at the number of 
questions a teacher asks one should look at the function of these questions. Even though 
many teachers control the initiation and evaluation in the IRE pattern there might be 
differences in how this is enacted that results in different functions. To understand the 
function of initiations and evaluations one has to study them as part of the dialogue; 
probably in more detail than given in the IRE pattern in order to differentiate between 
different types of teacher initiations, student responses and teacher evaluations.   

One such approach of describing classroom discourse in more detail is provided by 
Fraivillig, Murphy, and Fuson (1999) with the framework called ACT (Advancing 
Children’s Mathematics). The framework is developed based on an in-depth analysis of 
one skilful teacher and has three components: eliciting children’s solution methods, 
supporting children’s conceptual understanding and extending children’s mathematical 
thinking. Based on the examples from Wells (1993), it seems to be possible to both elicit, 
support and extend children’s mathematical thinking within the IRE pattern. Another 
detailed approach is provided by Alrø and Skovsmose (2002) and their eight 
communicative features: getting in contact, locating, identifying, advocating, thinking 
aloud, reformulating, challenging and evaluating. It is possible to fit most of these concepts 
into an IRE pattern. A third detailed approach is the model suggested by Mortimer and 
Scott (2003) to describe how teachers work with students to develop ideas along two 
dimensions: the dialogic - authoritative and the interactive - non-interactive dimension. The 
dialogic-authoritative dimension is especially interesting when related to IRE and where 
the authority is placed during the evaluation. Even though the teacher leads the evaluation 
in an IRE pattern, it is possible to let the mathematical arguments be the authority and 
include students’ arguments in a more dialogic approach. On one hand, most patterns 
described by ACT (Fraivillig et al., 1999), the eight communicative features (Alrø & 
Skovsmose, 2002) and the two dimensions from Mortimer and Scott (2003) might be 
found in an IRE pattern. On the other hand, it is more likely to find a higher frequency of 
for example extending, challenging and dialogic/interactive patterns in other types of 
practices, such as in instructive communication (Brendefur & Frykholm, 2000) or in an 
inquiry/argument classroom (Wood, Williams, & McNeal, 2006). 

A recent approach of describing classroom discourse in mathematics in detail is the 
redirecting, progressing and focusing framework (Drageset, 2014) and the corresponding 
description of five different types of student comments (Drageset, 2013). These were 
developed from a study of five practices where conversation analysis was used to study the 
mathematical discourse on a turn-by-turn basis. The redirecting, progressing and focusing 
framework (see Table 1) describes thirteen different teacher actions during classroom 
discourse and organises these in three groups or superordinate categories.  
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Table 1 
The Redirecting, Progressing and Focusing Actions Framework 

Redirecting actions Progressing actions Focusing actions 
Put aside Demonstration Enlighten detail 
Advising a new strategy Simplification Justification 
Correcting question Closed progress details Apply to similar problems 
 Open progress initiatives Request assessment from other 

students 
  Notice 
  Recap 

 
The redirecting actions are typically when the teacher wants the student(s) to change 

their approach. This was done by putting aside the student suggestion, by advising a new 
strategy, or by asking questions in such a way that it included a correction. The progressing 
actions are about moving the progress forward. This was done either by demonstrating the 
entire solution process, by simplifying through hints and suggestions, by asking closed and 
often basic questions to move along one step at a time while the teacher controlled the 
process, or by asking open questions and leaving it to the student(s) to choose how to 
progress. The focusing actions are about stopping the progress to look deeper into some 
important detail and consist of two main types. One type is to request students either to 
enlighten in detail how they solved or thought to arrive at the answer, to justify why their 
answer or method was mathematically correct, to apply the method on a similar problem, 
or to assess. The other type is the teacher pointing out important ideas or rules either during 
the solution process (notice) or after the solution was found or agreed upon (recap).  

Using the same data, Drageset (2013) also developed five categories of student 
comments: explanations, initiatives, teacher-led responses, unexplained answers and partial 
answers. These add to the categories describing teacher actions and together give a set of 
concepts able to describe all mathematically related comments in these five practices. 

The frameworks describing teacher and student comments on a turn-by-turn basis 
(Drageset, 2013, 2014) were developed from five practices that could all be labelled as 
consequently using the IRE pattern. The thirteen categories of teacher comments and five 
categories of student comments illustrate how large a variation might be hidden within 
IRE.  

Research Question 
IRE only offered three concepts usable to describe mathematical discourse: initiation, 

response, and evaluation; and a practice is described as either IRE or not IRE. More 
detailed frameworks such as ACT (Fraivillig et al., 1999), the eight communicative 
features (Alrø & Skovsmose, 2002) and the combined framework describing teacher and 
student comments (Drageset, 2013, 2014) enable us to go one step deeper. With more 
concepts that can be tools to describe communication on a turn-by-turn basis it becomes 
possible to look at how these concepts or categories are related to each other in different 
ways and in different practices. For example, it becomes possible to inspect how teachers 
respond to particular types of student comments in order to describe different qualities of 
the discourse. The aim of this article is to first describe different types of student 
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explanations and then inspect how teachers respond to these. The research question is this: 
What different types of student explanations exist, and how do the teachers respond to 
student explanations? 

Method 
This study is part of a larger study of 356 teachers that answered a test of their 

mathematical knowledge for teaching and a questionnaire about their beliefs. Based on the 
results, five teachers were picked for further study. These were all teaching at upper 
primary (grade five to seven, mainly ages 11 to 13) and had between five and twenty-five 
years of experience as mathematics teachers. The majority of teachers in Norwegian 
primary schools are educated as general teachers, typically with some education in 
mathematics. These five all belonged to this majority. A researcher visited the classrooms 
and filmed all mathematics teaching for one week, typically four or five lessons of 45 
minutes. The filming started at the first lessons of the topic of fractions that school year. 
The camera focused on the teacher and the microphone was able to catch everything the 
teacher said and almost everything said to the teacher.  

All the films were then transcribed and analysed by looking at single turns and 
characterising them regarding their role in the dialogue. This means that the single turns 
were not analysed in isolation but as a part of the dialogue. As the analysis described the 
dialogue in itself and not as a tool to see something else, it belongs to conversation 
analysis. Similar turns were put into groups and formed initial categories and through a 
rather long process of defining, redefining, merging and splitting groups a framework that 
was able to describe all mathematically related turns was developed (for further details, see 
Drageset, 2013, 2014). 

The data analysis in this article builds on the work done during the development of the 
framework. As all student explanations were categorised (and marked) it became possible 
to go deeper into the data by re-visiting all student explanations and studying how the 
teachers responded to each of them. Overall in these five practices, one of eight student 
comments were explanations. More than half of these were about explaining action (what 
and how) while explaining reasons and explaining concepts were just over and under a 
quarter.  

Findings 
Three Types of Student Explanations 

The study of single student turns developed five superordinate categories: explanations, 
partial answers, student initiatives, teacher-led responses and unexplained answers 
(Drageset, 2013). This article focuses on student explanations and the superordinate 
category of explanations includes student explanations. The following excerpt includes two 
rather similar explanations: 

Student:   It is several different fractions which has different denominator, but … means the same 
nevertheless.  

Teacher:  Different denominators but means the same nevertheless, how would you clarify that? 
Student:   Um, it is divided in more pieces but it is the same amount … is divided in more. 

Both these student comments are about explaining the concept of equivalent fractions. 
By grouping student explanations related to concepts a basic category was formed. Most 
such explanations of concepts were students trying to explain the concepts of fractions, 
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numerators and denominators. Quite often, the explanations were unpolished like the 
example above, where the students struggled to find precise expressions. 

Another type of explanation were related to reason: 
Student:  One sixth of eighteen equals three. 
Teacher:  Why? 
Student:  Because one … three times six are eighteen. 

Here the student tries to explain why he knows that one sixth of eighteen equals three. 
In the basic category of explaining reason there are many different explanations, more or 
less complete and more or less mathematically founded. By grouping all explanations that 
have in common that the student tries to justify by explaining why an answer or a method 
is correct another basic category was formed.  

But all explanations could not be described as explaining concept or reason, such as 
this one: 

Student:  Then he gives one fourth of the remaining to his sister. 
Teacher:  Okay, what do you have to do now then? 
Student:  Then I have to take one fourth of one hundred which is twenty-five because twenty-five 

multiplied by four are … (impossible to hear). And then … one hundred minus twenty-
five, that is seventy-five.  

This is a description of the steps of the solution process, not trying to justify why the 
method is correct or what the concepts involved means. This category consists of 
explanations about how or what, how to reach a solution or what to do, and is named 
explaining action. Often, these explanations are referring to a method to find an answer by 
explaining either what or how something can be done (before doing it) or was done (after 
doing it). These formed the basic category of explaining action.  

As illustrated by Drageset (2013), the superordinate category of student explanations is 
quite precisely defined and differs from the other categories of student comments. The 
above examples illustrates that it is possible to go one step deeper and find three basic 
categories within the superordinate category of explanation and that these also are rather 
distinct: Explaining concept, Explaining reason, and Explaining action. The different 
explanations were typically requested by the teacher and gave explicit details about 
concepts, reasons and actions. Such explanations seem to serve both as a control of a 
student’s understanding and as a way to make details explicit in order to share knowledge. 
In the following they will be inspected individually to see how the five teachers typically 
responded to each type.  

Teachers’ Response to Student Explanations 

During a discussion about fractions equal to one half, the teacher asks the students to 
find the denominator when the numerator is 34 and the fraction has to be equal to one half.  

Student:  Sixty-eight. 
Teacher:  Bravo. Sixty-eight (writes the fraction on the blackboard). Because … what was the 

reason for this? 
Student:  Because three plus three is six and four plus four is eight. 
Teacher:  Yes. Double. Yes. Double the denominator related to the numerator.  

The student explains the reason in a rather algorithmic way and the teacher responds to 
this by pointing out and clarifying the general idea before the process continues with 
similar tasks using the idea pointed out by the teacher. Typically, teachers point out an 
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important idea or rule during a solution process or between similar tasks so that the idea or 
rule can be used immediately by the students. Such responses are called notice (Drageset, 
2014) and are the most frequent, following students’ explaining reason.  

At other times the teacher response to students explaining reason looked like this: 
Student 1:  One sixth of eighteen is three. 
Teacher:  Mmm (confirming). What is three sixths of eighteen? 
Student 1:  Ehm … I don’t know 
Teacher:  But if one sixth is three … (other students comment omitted). 
Student:  Nine. 
Teacher:  Yes, but why? 
Student:  Because it becomes more. Three, six, nine. 
Teacher:  Three, six, nine, yes. One sixth of thirty? 

In this case the teacher asks why an answer is correct, accepts the answer and goes on 
without further comments or clarification. The difference between the two excerpts above 
goes into the core of orchestrating; when to go into details and when to move on. While 
pointing out, emphasising and clarification are important teacher actions in order to help 
other students understand, it also seems obvious that a teacher cannot go into details about 
every explanation. Then there would be little progress. Also, some student explanations 
might be assessed as sufficient and then the teacher most likely sees no need for an 
intervention. 

Looking at student explaining concepts, this is an example of a frequent response: 
Teacher:  What does it mean to find equivalent fractions? Anyone that can say something about 

it? What do you do then? 
Student:  There are many different fractions that have different denominators, but … means the 

same anyway. 
Teacher:  Different denominators but means the same anyway, how would you clarify that? 
The student does not really answer the initial question from the teacher. But instead of 

keeping the focus on how it is possible to find equivalent fractions the teacher follows up 
the student comment with a new question that requests a clarification. This is also a key 
question about equivalent fractions; how can fractions be different and equal at the same 
time? This is about addressing the important details and make their reasons visible and 
understandable for every student. Different teacher actions to clarify details, rules, reason, 
concepts and ideas were observed quite frequently, either by the teacher clarifying or by the 
teacher requesting students to clarify. 

An example of a teacher response to students explaining actions is this one: 
Teacher:  Three tenths and twenty-nine hundredths. Can you manage that one? Which one is the 

largest? 
Student 1:  Three tenths. 
Teacher:  You think that it is three tenths? How did you manage … It is completely correct, but 

how did you think then? How did you manage to solve it? 
(Student 1 does not answer the question so the irrelevant responses are omitted) 

Student 2:  Because twenty-nine hundredths becomes twenty-nine parts of a hundred, while thirty, 
no, three tenths becomes thirty hundredths. 

Teacher:  Precisely. Three tenths is the same as thirty hundredths and that is larger than twenty-
nine hundredths. 

Student 2 gives an explanation of how to find the solution. The teacher repeats the 
student explanation, but also changes it a little bit to emphasise that three tenths is the same 
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as thirty hundredths and that is the larger one. This pointing out, by recapitalising the 
important idea, concludes the discussion.  

Discussion 
The three types of student explanations refer to different types of mathematical work 

that are important. Explaining action is about sharing the way a solution was found and 
such explanations are important in order to help teachers assess and fellow students follow 
the line of thought. Explaining action might be rather procedural, using standard methods 
or rules and explaining each step in the particular case. Explaining reason is clearly 
different as it goes into the reason why a rule or a method is a mathematically justified 
choice in this case, or why an answer is correct. Explaining reason is a type of 
mathematical work that goes into the core of mathematical understanding. While 
explaining action and reason typically is about solving tasks, explaining concept is 
different. It is about explaining concepts that students need to understand in order to solve 
tasks in a meaningful way. 

Altogether for all three types of explanations, the teachers responded with focusing 
actions in almost two of every three cases. The main type of teacher response was to use 
notice, which is about pointing out rules and reasons, especially during solution processes 
but also during other types of discourse. The purpose of using notice seems to be to clarify 
for other students to follow the thoughts or to help the students back on track. Another 
major type was to use closed progress details where the main objective seems to be to 
move the process forward without going into further detail. This is a natural thing to do if 
the teacher assesses the student explanation to be both mathematically correct and clear 
enough for other students to understand. Arguably, every mathematics lesson needs some 
progress.  In addition to this, requesting students to enlighten details was the third most 
frequent teacher response. This is a request for the students to explain how a solution was 
reached or what to do in order to find the solution. Making details available and visible for 
other students is, according to Franke et al. (2007), one of the most powerful moves a 
teacher can take. 

There were not any major differences in how the teacher responded to the three 
different types of student explanations (explaining reason, explaining concept, explaining 
action). The only finding to report was that teacher responses to students explaining reason 
and concept more often where focusing actions (two of three) than responses to explaining 
action (one of two). This might indicate that students’ explanations of reasons and concepts 
more often needed further clarification than explanations of action needed.  

Conclusion 
The development of concepts to describe mathematical discourse is important in order 

to describe what happens in the classroom in more detail. The IRE pattern (Cazden, 1988) 
only gives us three concepts to describe a discourse where the teacher talks every second 
time (the teacher comments are either initiatives or evaluations and the student comments 
are responses). More detailed frameworks such as the ACT (Fraivillig et al., 1999), the 
eight communicative features (Alrø & Skovsmose, 2002) and turn-by-turn based 
frameworks of teacher and student comments (Drageset, 2013, 2014) provide us with 
concepts that enables us to describe variation in much more detail, both within IRE and in 
other practices. Wells (1993) has illustrated how too general concepts, such as IRE, might 
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hide more information than they give. The three distinct types of student explanations add 
to the work of developing more detailed tools in order to describe variation. The aim is not 
to describe variation for its own case; it is to characterise different qualities of 
communication in order to understand more of the learning process.  

This study is limited in the sense that only five practices were filmed, all being from 
Norway and all typical IRE-practices. Even though most concepts would probably be 
capable of describing other practices, there are probably other types of teacher and student 
comments in other cultures or other types of practices. Consequently, there is a need for 
further research in order to describe and develop concepts to describe comments or patterns 
not found in these five classrooms.  
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