
Primary School Children's Knowledge of Arithmetic Structure 

Elizabeth Warren 
Australian Catholic University 

<e. warren@mcauley.acu.edu.au> 

LynEnglish 
Queensland University of Technology 

<l.english@qut.edu.au> 

This paper is a report on the beginning of a much larger study that examines students' 
understanding and knowledge about the structures of arithmetic and generalising problems. 
Ninety-four students in their fmal years of primary school responded to a series of tasks 
designed to probe their knowledge of associativity and commutativity. The responses indicated 
that these students had failed to abstract from the experiences in arithmetic some of the 
mathematical structures believed necessary for the successful transition from arithmetic to 
algebra. 

Introduction 

Recent studies, such as Australian Year 12 students' performance in the Third 
International Mathematics and Science Study (1998), have reported the misconceptions many 
students hold not only with understanding the concept of a variable, but also in solving 
algebraic equations, and in translating word problems into algebraic symbols. While many 
students are experiencing difficulties, algebra still holds a pivotal role in the school curriculum 
in the 1990's (Principles and Standards for School Mathematics, Draft, 1998,). School algebra 
may be seen as a focus on understanding variables and their operations, and formulating and 
manipulating general statements about numbers (Kieran, 1996). The goals of algebra typically 
include: generalising arithmetic; studying the procedures used for solving certain kinds of 
problems; representing the relationships between quantities; and studying algebraic structures 
(Thorpe, 1989). Even with the rise of technology in the algebraic domain, students still need to 
have a fundamental understanding of the concept of a variable and basic algebraic structures 
(Kieran, 1996). 

Recently in the literature the distinction has been made between algebra, algebraic thinking, 
and pre-algebraic thinking (Kieran, 1992). Beginning algebra students are required to move 
from arithmetic thinking to algebraic thinking. Pre-algebra is defmed in the literature as the 
transition between arithmetic and algebra transition (Boulton-Lewis, Cooper, Atweh, Pillay, & 
Lewis, 1998). It is when students think about the numerical relations of a situation, discuss 
them explicitly in simple everyday language and eventually learn to represent them with 
letters (Herscovics & Linchevski, 1994). This transition is believed to involve a move from 
knowledge required to solve arithmetic equations (operating on or with numbers) to knowledge 
required to solve algebraic equations (operating on or· with the unknown or variable). This 
transition is referred to as breaching the cognitive gap or didoctic cut between arithmetic and 
algebra. 

Two aspects are considered to be crucial in this transition stage. These are, first, the use of 
letters to represent numbers and, second, explicit awareness of the mathematical method that 
is being symbolised by the use of both numbers and letters. This involves a shift from purely 
numerical solutions to a consideration of method and process. Yet many students experience 
difficulties in achieving this transition (Boulton-Lewis, Cooper, Atweh, Pillay, & Lewis, 
1998). Kieran and Chalouh (1992) suggest that most students are not given the opportunity to 
make explicit connections between arithmetic and algebra. 
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When operating in an algebraic world students are frequently required to manipulate 
symbols. This is often achieved by simply using transformational rules such as, "when you 
move something from one side of the equation to the other side change the sign". Students 
typically have little understanding of the relationship among quantities or the structural 
properties of the mathematical operations (Kieran, 1992). Typically these students cannot 
provide a rationale for the transformation. Kieran (1992) believes that a predominant reason 
given for this is that students have limited knowledge about mathematical structure. 

An understanding of algebraic structure is typically derived from knowledge of the 
structure of arithmetic. In this instance, knowledge of mathematical structure is knowledge 
about the sets of mathematical objects, relationship between the objects and properties of 
these objects (Morris, 1999). The knowledge is considered to be about relationships between 
quantities (e.g, equivalence and inequality), properties of quantitative relationships (e.g., 
transitivity of equality), properties of operations (e.g., associativity and commutativity), and 
relationships between the operations (e.g., distributivity). In a beginning algebra course it is 
implicitly assumed that students are familiar with these concepts from their work with 
arithmetic. From repeated classroom experiences in arithmetic it is assumed that by inductive 
generalisation students arrive at an understanding of the structure of arithmetic. Thus, 
knowledge of structure is considered to be at a meta-Ievel, derived from experiences in 
arithmetic. How do classroom experiences impact on students' ability to derive structure? 

Previous research has documented ways in which students' arithmetic experiences 
constitute obstacles for the learning of algebra. Most of this research has focussed on the 
differences between the two systems, for example, differing syntax (Lodholz, 1993), closure 
(Kieran, 1992), use of letters as shorthand (Booth, 1989), manipulations (Booth, 1989), and 
equality (Wagner & Parker, 1993). Littk research has focussed on students' ability to induce 
mathematical structure from their experiences in arithmetic. 

The current Queensland primary curriculum number strand consists of 4 main components, 
namely, numeration, basic facts, an understanding of the four operations (addition, subtraction, 
multiplication, and division) and the algorithms (Department of Education, Queensland, .1987). 
The emphasis appears to be on arithmetic as a computational tooL that is, counting and 
calrulation Calrulation typically involves the use of prescriptive algorithms (Department of 
Education, Mathematics Sourcebooks, 1988). Students' experience with number in the primary 
school appears to be limited to numeration, operations, and the implementation of the algorithms. 
We argue that the overriding emphasis on computational procedures at the expense of expbring 
relationship s is lar~ly responsible for children's limited understanding of arithmetic structure. 

This study reports on the pilot sta~ of a lar~r study designed to investigate students' pre­
algebraic thinking. In particular, it expbres students' ability to understand mathematical structure 
and extract general relationships and principles from problem situations. The focus of this paper 
is on children's knowledge of the properties of the operations, that is, associativity and 
commutativity. The sample was drawn from the upper primary school. At this sta~ students 
have completed all formal experiences with the four operations. 

The p articular aims relating to this paper were to ascertain students' ability to 
1. recognise the commutative and associative law;. 
2. exp lain these laws in evety day langmge; and 
3. represent these laws in symbols. 
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Method 

Instrument 

A written test consisting of five tasks was developed. This paper reports on the results of 
the first two tasks. These two tasks focussed on identitying children's knowledge of 
associativity and commutativity in arithmetic. Each task consisted of four components. In the 
first segment students were given examples of the four operations and asked to indicate which 
were true or false (see Tables 1 and 5). The numbers chosen in the examples were believed to 
be smalf enough to allow students to complete the calculations without the assistance of a 
calculator. In the second segment, students were asked to create two more examples for the 
operations that they believed were true. They were then asked to explain the patterns they 
had discovered and asked to express the pattern using symbols such as " and 00 instead of 
using numbers. The instrument was administered under test conditions. Students were allowed 
ample time to complete each of the tasks and the test was calculator supported. 

Participants 

The test was administered to ninety -four children aged from 10 years to 12 years. Half the 
sample had just completed the second last year of primary school and the other half had just 
completed the final year of primary school, ready to make the transition to secondary school. 
The children attended three different primary schools in Brisbane. Each school was located in 
a middle to high socio-economic area. The participating schools were considered to be typical 
in their approach to teaching mathematics, that is, textbook supported and an emphasis on the 
algorithms. 

Results and Discussion 

Initially, the Year 6 and Year 7 students' results were analysed separately. X2 tests were 
used to identify the differences between the two groups. On the whole, the groups were not 
significantly different. Thus for reporting purposes, the two groups wereocombined (n = 94). 

The first task related to gauging students' understanding of the commutative law. Students 
were initially asked to indicate for which operations the commutative law was true. These 
results are summarised in Table 1. 

Table 1 
Percentage Distribution of Responses for the Commutative Law Question (n = 94) 

Operation Example True False 

Addition 1+3=3+1 94.7 5.3 
Subtraction 1-3=3-1 11.7 88.3 

Multiplication 1x3=3x1 95.7 4.3 
Division 1+3=3+1 16.0 83.0 

Most of the students recognised that the number sentences were valid for addition and 
multiplication. Of concern was the number of students who believed that the statements for 
subtraction and division sentences were true, especially as the students were in the fmal stages 
of their primary school experience. 
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Students were asked to create two more examples for the operations they believed were 
true. The results are summarised in Table 2. 

Table 2 
Percentage Distribution of Responses to "Create two more examples IJ (Commutative Law) 

Operation One example Two examples Three examples 

Addition 67.0 21.3 1.1 

Subtraction 0.0 0.0 0.0 
Multiplication 60.6 13.8 1.1 

Division 0.0 2.1 0.0 

As can be seen in Table 2, there was a marked difference between being able to recognise 
that the commutative law held for the addition and multiplication examples and being able to 
create two more examples. 

The next segment required students to explain in their own words the patterns they had 
discovered in the commutative law. Students' responses fell into six broad categories 

"" delineated from the data. The categories appeared to represent increasingly more sophisticated 
levels of response. Table 3 lists the categories and summarises the percentage of responses in 
each category. 

Table 3 
Responses to "Explain to afriend the patterns you have discovered" (Commutative Law) 

Category 

1. No explanation 

2. Offered a statement of the form "it goes in patterns" 

3. Used only numbers in the explanation (e.g., 2 times 3 = 3 times 2) 

4. Attempted to generalise but incorrect 

5. Gave a valid explanation without the inclusion of the particular operation 
(e.g. turned around each time) 

6. Gave a valid explanation with the inclusion of the particular operation (e.g., 
When you add and multiply it would be the same if you switch them around) 

% frequency 

20.2 

46.8 
13.8 

2.2 

10.6 

6.4 

A typical category 6 response was, the reason that 1 and 4 are true is because that when 
you multiply or add something then turn it around it will always equal the same thing, and 
when you subtract and divide the numbers and then turn them around it won't. One student 
responded by focussing on the number sentences that were not true: Because 1-3 will give you 
an answer of -2. While 3-1 will equal 2. And 1 +3 will give you an answer of 0.33 while 3+1 
will give you 3. While the other two operations are true. 

Two-thirds of the responses fell into the first two categories; that is, no response, or 
simply gave a statement such as "it goes up in patterns". Only 17 percent of the sample 
supplied a valid explanation. Six percent of the sample included the specific operations in their 
response. 

This explain segment for the commutative law was the only component of the test where 
there was a significant difference between the Year 6 and Year 7 responses (X2 = 20.1, P = 

0.003). A significantly greater number of Year 6 responses fell into the first two categories and 
no Year 6 student offered a category 6 response. 
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Table 4 summarises the percentage of students who were able to express their patterns in 
symbols. 

Table 4 
Percentage Distribution of Responses to Using Symbols to Represent the Commutative Law 

Operation Correct Incorrect 

Addition 67.0 3.2 

Subtraction 0.0 2.1 

Multiplication 45.7 2.1 

Division 0.0 3.2 

The students experienced greater difficulty in expressing the commutative law 
symbolically for multiplication in symbols than the addition law. 

In summary, approximately 95 percent of students indicated that the examples for 
addition and multiplication were correct. Twenty one percent of students were able to create 
two more examples for addition and 13.8 percent were able to create two more examples for 
multiplication. Two thirds of the students were unable to explain the pattern in words, with 
the Year 6 students experiencing greater difficulty than the Year 7 students. Two thirds of the 
sample could express the addition pattern in symbols and under half could express the 
multiplication pattern in symbols. 

The second task related to ascertaining students' understanding of the associative law. The 
fonnat of the associative law task mirrored the fonnat of the commutative law task (refer to 
Table 5). The results for each of the four components are summarised in Tables 5,6, 7 & 8. 

Table 5 
Percentage Distribution of Responses to the Associative Law 

Operation True False 

(2 + 5 ) + 8 = 2 + (5 + 8) 88.3 11.7 
(2 - 5 ) - 8 = 2 - (5 - 8) 12.8 87.2 
(2 x 5) x 8 = 2 x (5 x 8) 89.4 10.6 
(2 + 5) + 8 = 2 + (5 + 8) 19.1 79.8 

Just less than 90 percent of the sample believed the addition and multiplication number 
sentences were true. As for the commutative law, of concern were the number of students who 
believed the number sentences were true for subtraction and division, with up to 20 percent of 
the sample indicating that the division number sentence was valid. 

Table 6 
Percentage Distribution of Responses to "Create two more examples" (Associative Law) 

Operation One example Two examples Three examples 

Addition 54.3 19.1 0.0 
Subtraction 1.1 0.0 0.0 
Multiplication 50.0 12.8 0.0 
Division 0.0 2.1 0.0 
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A small percentage of the sample could create two more examples for the addition pattern 
and up the multiplication pattern. Half the sample created only one more example for each. 
Up to a quarter of the sample could not create any more of the examples of the associative 
law. 

Table 7 summarises the distribution of responses relating to asking children to explain the 
patterns they had discovered. 

Table 7 
Responses to "Explain to afriend the patterns you have discovered" (Associative Law) 

1. 

2. 
3. 
4. 

5. 

6. 

Category 

No explanation 

Offered a statement of the form "it goes in patterns" 

Used only numbers in the explanation [e.g., (2+3)+4=2+(3+4)] 

Attempted to generalise but incorrect 

Gave a valid explanation without the inclusion of the particular 
operation (e.g. move the brackets) 

Gave a valid explanation with the inclusion of the particular 
operation (e.g. When you add and multiply you can move the 
brackets) 

% frequency 

30.9 

39.4 

11.7 

2.1 

13.8 . 

2.1 

Compared with the commutative la~, even more students experienced difficulties in 
explaining the patterns in language with 70 percent of the sample proffering no explanation or 
"goes up in patterns". Unlike the commutative law for this component of the task, there was 
no significant difference between the Year 6 and Year 7 students. 

Table 8 
Percentage distribution of responses to using symbols to represent the associative law. 

Operation Correct Incorrect 

Addition 51.1 2.1 

Subtraction 0.0 2.1 

Multiplication 42.6 5.3 

Division 0.00 5.3 

In summary, approximately 88 percent of students indicated that the examples for 
addition and multiplication were correct. Nineteen percent of students were able to create two 
more examples for addition and 12.8 percent were able to create two more examples for 
multiplication. Seventy percent of the students were unable to explain the pattern in words. 
Approximately half of the sample could express the addition pattern in symbols and under 
half could express the multiplication pattern in symbols. 

In order to compare students' facility with the .associative and commutative laws, each 
student was allocated a.score for the first segment of ~ach task accordingly to whether their 
response was correct or incorrect. The results of a paired t test indicated that there was no 
significant difference between students' facility to recognise the commutative law and the 
associative law (t93=1.704, p = 0.092). There was also no significant difference between the 
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level of response when students were asked to describe the pattern in their own words for the 
associative law and commutative law. In fact, most students performed poorly on both of 
these segments of the two tasks. 

Implicati~ns and Conclusions 

The results of this initial study highlight a number of concerns and implications for 
teaching and research in early algebra education. 

There were a significant number of students who believed that the number sentences for 
subtraction and division were correct, with more students experiencing difficulties with 
division than with subtraction. This could occur for a number of reasons, for example, (i) a 
focus in early mathematics education on discovering relationships rather than also exploring 
non-relationships, (ii) little opportunities for students to explore their own conjectures and 
inductions, or (iii) teaching mathematics in a non-calculator supported environment making it 
difficult to explore the non relationships that exist in subtraction and division. 

Many students experienced difficulties in fmding more examples. Most could only find 
one more example, even though they were asked to find two. One reason for this could be that 
they made decisions in the first segment of the tasks purely on computational grounds 
without recognising the mathematical structure being represented by the number sentences. 
This could also reflect limited experience with the use of "=" as equality. Falkner, Levi and 
Carpenter (1999) reported that young children have enduring misconceptions about the equal 
sign. Even children as young as Grade 1 had already formed misconceptions. The reason for 
this, they suggest, is the equal sign is typically used in equations where one number comes 
after it. 

The segment of the tasks relating to expressing patterns in everyday language was where 
almost all students experienced difficulties, with most proffering no answer or a basic 
response, such as, "it goes in patterns". The importance of natural language to the algebraic 
domain has been acknowledged in previous research ((Herscovics & Linchevski, 1994; Redden, 
1996). Herscovics, Linchevski and Redden's research indicated that natural language 
description of number patterns seems to be a necessary prerequisite for representing the 
patterns in algebraic notation. While the present students were not strictly using algebraic 
notation to represent the patterns they had found, up to 67 percent of the sample could 
represent at least one of the patterns using symbolic notation. This raises a number. of 
questions needing further research. How important is expressing patterns in everyday language 
for the successful transition from arithmetic to algebra? What is the relationship between 
language development and being able to describe mathematical relationships? MacGregor and 
Price (in press) indicate that this relationship is not straightforward. If expressing patterns in 
everyday language were important for the successful transition into algebra, what activities 
would assist students in this area of language development? 

The results of this study point to a number of concerns with regard to the present 
curriculum. From this initial study, iJ seems that the majority of students are leaving primary 
schools with little awareness of the notion of mathematical structure. It seems that from the 
instances they are experiencing in arithmetic, they have failed to abstract the relationships and 
principles needed for algebra. More specifically, they failed to abstract the associative and 
commutative laws. 
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This has implications for the primary school curriculum. There needs to be more of a 
balance between calculations and searching for the implicit patterns in the operations. Students 
not only need many instances of relationships, they also need to explicitly discuss these 
relationships in everyday language. Present experiences do not appear to be reaching this 
balance. Students also need to explore non-relationships, such as 1 + 3 = 3 + 1. They also need 

broader experiences in arithmetic encompassing activities where the equals symbol is used in 
equivalent situations (e.g., 2 + 3 = 0 + 2). 

This paper reports on the beginning of a much larger study which includes interviews with 
selected students. These interviews will help clarify and illuminate many of the conjectures 
made from the written responses. Conjecturing from pen and paper responses about what 
children know or don't know is always fraught with difficulties. 
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