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Mathematics is abstract in the sense that mathematical concepts are formed by a process of 
abstraction-the recognition and reification of a similarity between a set of previously 
unrelated objects, events, or ideas. It follows that effective mathematics teaching should 
promote the abstraction process. Traditional.m:ethods seldom do so. Constructivist methods 
theoreticaJly encourage abstraction, but ·this is rarely emphasised and the ·result may be an 
inefficient teaching procedure. Three examples are given of how explicit attention to the 
abstraction process could let'd to radically different approaches to· teaching; Some principles of 
what we call TeachingforAbstraction are abstracted from these examples~, 

Many students have difficulty relating abstract mathematical ideas to the everyday world. 
Students who do well in mathematics examinations often cannot give examples of the concepts 
they have learnt or suggest situations where the procedures they have carried out correctly 
might be· useful. Students who do not do so well make little sense of mathematics and are 
frequently reduced to rote learning. 

We believe that a major reason for this state of affairs is a misunderstanding of the nature 
of abstraction in mathematics. The aim of this paper is to clarify the nature of abstraction and 
to derive a framework for teaching mathematics intended to lead to meaningful and purposeful 
learning. 

Mathematics is Abstract 

Mathematics deals with concepts, procedures, theorems, definitiolls, and proofs. The 
concepts are abstract objects (e.g., points, lines) and abstract relations between such objects 
(e.g., parallel, intersect). Procedures and theorems are universal statements about these 
concepts: rules for obtaining one abstract object or relation from others (e.g., how to construct 
parallel lines) and general assertions about these concepts (e.g., properties of parallel lines), 
respectively. Finally, definitions are statements relating new concepts to concepts already met, 
and proofs are logical arguments linking rules or theorems deductively: 

Mathematics is abstract because the constituent concepts are abstract. But what does this 
. mean? What is an abstract concept? 

Abstraction as a Process 
I 

A common theme in the work of Dienes, Piaget; and Skemp earlier this century is that 
concepts are formed when experiences are connected to one another on the basis of their 
similarities (Mitchelmore & White, 1995). Skemp (1986, p. 21) summarised the theory 
concisely as follows: 

Abstracting is an activity by which we become aware of similarities ... among our experiences. 
ClassifYing means collecting together our experiences on the basis of these similarities. An abstraction 
is some kind of lasting change, the result of abstracting, which enables us to recognise new experiences . 
as having the similarities of an already formed class .... To distinguish between abstracting as an 
activity and abstraction as its end-product, we shall ... call the latter a concept. 

In the case of everyday concepts (such as "spoon"), the similarities between examples of 
the concept frequently relate to the objects' general appearance and purpose. Piaget referred to 
the empirical abstraction of everyday concepts. 
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Elementary mathematical concepts (such as "three")'are formed through the same process 
of classification and abstraction, but with one important difference: The objects which are 
classified are not concrete objects nor even mental objects (everyday concepts), but objects or 
concepts which are related to one another in a consistent manner. For example, the abstract 
concept "three" arises from the realisation that counting particular sets of objects (one, two, 
three) always ends in the same number-no matter how the objects are rearranged. Piaget 
called the process involved in the formation of elementary logico-mathematical concepts 
reflective abstraction and emphasised its. active nature: "The [mathematical] abstraction is 
drawn not from the object that is acted upon, but from the action itself" (Piaget, 1970, p. 16). 
In common with many other writers, Piaget also emphasised the fact that abstraction is 
constructive. Dubinsky (1991, p. 99) even claims that "Piaget seemed to feel that this 
constructive aspect of reflective abstraction is more important than the abstraction (or 
extraction) aspect". Sfard (1991) uses the term reification for the final stage of the abstraction 
process where the learner constructs a new mental object to embody a perceived similarity. 

Generalisation also plays an important· part in the abstraction process. After the learner 
has already abstracted a concept from a given set of situations, he or she may realise that the 
concept-possibly with some' modification~an be extended to a wider set of situations. 
Generalisation thus refers to the process of rendering a known concept more general.· The term 
is also used to mean an invariant relation between concepts-in mathematics, a procedure or a 
theorem. 

Abstraction (together with the associated generalisation) is therefore fundamentally 
important both to mathematics' and to the . learning of mathematics (White & Mitchelmore, 
1999). We would therefore expect it to be one of the main aims of mathematics teaching. Is it? 

Do Current Methods of Teaching Mathematics Teach Abstraction? 

We claim that none of the usual approaches to teaching mathematics explicitly teaches the 
abstraction process. However, some methods do promote abstraction. 

The ABCMethod 

Traditiomil mathematics teaching the world over follows what we have called the ABC 
Method (Mitchelmore, 1999): Abstract conc'epts and proce~ur~s are taught Before Concrete 
examples and applications. The theory is that "knowledge acquired in 'context-free' 
circumstances is supposed to be available for general application.in all contexts" (Lave, 1988, 
p. 9), but in practice this does not happen. Because the knowledge is context-free, it is 
ab~tract-apart (Mitchelmore & White, 1995) and cannot be easily related to familiar 
situations. Concepts can only be readily applied if they are abstract-general, that is, if they 
represent that which is. general to a variety of situations. The ABC method proceeds in 
opposite direction to the abstraction process. 

Constructivist Approaches to Mathematics Teaching 

Constructivists, following Piaget, emphasise the need for children to construct their own 
understanding but rarely (unlike Piaget) talk about abstraction. Exceptions are to be found in 
the works of Dubinsky (e.g., 1991) and von Glasersfeld (e.g., 1995). 

However, many elements of constructivist teaching could be expected to promote 
abstraction: The emphasis on discussion of existing knowledge or experience; the challenge of 
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problem solving; the admission of contrasting methods -and the reconciliation of conflicting 
solutions; the use of small group cooperative learning-all promote reflection which could lead . 
to the recognition of communalities and hence either the abstraCtion of new concepts or the 
generalisation of existing ones. 

For example, consider the Dutch "Realistic Mathematics Education" (RME) movement. 
(Treffers, 1991, p. 26) describes the five basic principles of RME: 

1. Mathematics learning is constructive 
2. Learning proceeds over several levels over a long time period 
3. Reflection plays an important role in learning 
4. Learning is interactive 
5. Mathematical ideas are interconnected 

The generai constructivist characteristics are clearly visible. 
Typically, the RME approach to teaching a topic consists of three stages: 

. 1. Develop rules of operation in several specific, familiar, everyday contexts 
2. Demonstrate that the same structure is present in several such contexts 
3. Formulate, symbolise and study the common structure 

Treffers (1991, p. 32)calls the first step horizontal mathematising: "The modelingof problem 
situations [sol that these can be approached. with mathematical means." The second step 
consists of the recognition of structural similarities and the third step the construction of a 
new mental object. Treffers calls these steps vertical mathematising, whichis "directed at the 
perceived building and expansion of knowledge within the subject system, the world of 
symbols." We canrecognise the three steps as together constituting the abstraction process 
previously described. 

Dienes and Multiple Embodiment 

Dienes (1963) is the only example we know of an attempt'to teach abstract structures. by 
leading students to identify similarities between isomorphic structures. For example, place 
value concepts were abstracted from commonalities between his Multibase Arithmetic Blocks 
and tree diagrams. One of Dienes' basic principles was that of perceptual variability: "To 
abstract a mathematical structure effectively, one must meet it in a number of different 
situations to perceive its purely structural properties" (p. 158). Dienes aimed to create a 
teaching environment in which children learned' by reflecting on their experiences in. a variety 
of different situations. 

l Dienes was not happy with the outcomes of his experiments. "We assumed '" that 
abstraction would arise from a multiple embodiment of the concepts to be abstracted. By this 
I mean that situations physically equivalent to the concept-structure to be learned would, if 
handled according to specific instructions leading towards the structure, result in abstracting 
the common structure from all the physical situations. '" But as we observed children going 
through the 'abstraction exercises' , it soon became clear that the picture was far. more complex 
than we had assumed" (1963, p. 68). For example, requests to do "something like this" in a 
different embodiment or to say "how they are alike" initially brought out common· features 
instead of a common structure-but only the first time through, as if children were just not 
used to looking for deeper similarities. Nevertheless, he claims that "artificial exercises in 
forming isomorphisms could act as teaching devices to . help [ children] recognise similarities 
when they see them" (p. 85). 
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Our view of Dienes' experiments is that the various "concrete materials" he used to 
embody mathematical structures were only concrete in the sense of being constructed out of 
physical materials. They were not familiar objects in children's experience and were in fact 
already abstractions from that experience-abstractions made by the researcher and not by the 
children. This view is borne out by findings that children often have difficulty relating Dienes' 
blocks to arithmetical procedures (Boulton-Lewis, 1992). 

Teaching for Abstraction 

We suggest that it would be valuable to design mathematics teaching in such a way as to 
explicitly promote the abstraction of crucial mathematics concepts. To be consistent with our 
approach to abstraction, we shall first give some examples and then draw out the similarities 
which we shall call Teachingfor Abstraction. 

Mathematics has a highly developed specialist vocabulary. For example: 

• Point, line, plane, angle, parallel, symmetry, congruence, theorem, proof, ... 
• Length, area, volume, time, measurement, ... 
• Whole numbers, fractions, integers, addition, multiplication, powers, ... 
• Variable, function, equation, graph, domain, range, ... 
• ,Linear, quadratic, exponential, polynomial, logarithm, trigonometric, ... 

Some of these terms (such as "trigonometric") are only classifications, but most represent 
concepts-objects or relations. As such, they are candidates for teaching for abstraction. We 
have selected three, one each from the major curriculum areas of measurement, space, and 
number. 

Example 1: Area 

Like many crucial mathematical concepts, it is not possible to define area. Any definition 
(such as "amount of space") is quickly seen to be circular. (Just try to define "space" without 
using the word "area"!) But we all know an area when we see one, that is, we have learned to 
identify a certain similarity between a variety of what we now recognise as area situations. 
Teaching area for abstraction means helping children to learn this similarity and hence to 
abstract the concept of "area". 

The area similarity is based on two factors: (1) It is a property of a region or a set of 
regions. (2) The regions· are assumed to be uniform in some way, an assumption which is basic 
to the principle of conservation of area. So children need experience of several situations 
involving uniforln regions if they are to abstract the concept of area. Area cannot be learned 
simply from cutting up paper, drawing on paper, or substituting in formulae because these 
experiences may not be connected to children's physical experience; paper and formulae are 
already abstract. 

Some suitable area situations would include wall painting, book covering, floor tiling, seed 
planting, and land sales. All these involve operations on regions, and the uniformity 
assumption is either reasonable (e.g., all part,s of a paddock are equally grassy) or obvious 
(e.g., the same tiles are used all over the floor). Children could investigate such situations in 
their own right before even mentioning the word "area": 

Eventually, the teacher could challenge children to identifY what is the same across several 
such situations. The similarity that is identified would then be caned "area", and children could 
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look for some other areas situations which share the same similarity. Reflection about 
properties which are common to all these situations would lead to some powerful, general 
ideas-for example, that area measurement units may not overlap or leave gaps. Abstract 
relations (e.g., the formula for the area of a rectangle) could then be developed which are 
recognised as applicable to all area situations-and limited in their applicability by the 
uniformity assumption. Children would then have acquired an abstract-general concept of area. 

Example 2: Angle 

Research (summarised by Clements & Battista, 1992) has shown that children readily 
form concepts of corner, slope, and turn but have difficulty integrating_them into a single 
concept of angle. Our research (Mitchelmore, 1997, 1998; Mitchelmore & White, 1998, in 
press) shows that, whereas most Year 2 children see the corners in furniture, walls, and street 
intersections as similar in an angular sense, scissors are not readily recognised as having 
corners until Year 4 and leaning signposts not until Year 6. Also, about one-third of Year 8 
students cannot demonstrate the angles which show how corners are similar to sloping and 
turning objects and a similar fraction see no similarity between a turning wheel an<;l an opening 
door. 

The concepts of corner, slope, opening, and turn . are based on superficial similarities: 
Corners have two (more or less) visible angle arms, slope seems to be a property of a single 
static line, opening isa movement of a single line about its end-point,' and turning is ~ global 
movement which need not involve any obvious lines or points. To form a concept of angle, 
children need to recognise a deeper similarity between all these situations-namely, that they 
can all be represented by angles. (The astute reader will notice that, like area, it is not possible 
to define angle without falling into circular definitions.) 

Teaching angle for abstraction would fall into two stages. In the first stage, the teacher 
would help children to form separate abstract-general copcepts of corners, slopes, turns, and 
openings by examining many examples of each concept and looking for ~uperficial similarities. 
Carefully planned teaching could,webelieve, lead to children forming such concepts in Year 2 
or 3. Once each concept is secure, it could be developed to the point where children could 
compare and even measure corners, slopes, turns, and openings separately. The word "angle" 
need not be mentioned. 

In the second stage, the teacher would lead children to link the concepts of corners, turns, 
and openings. Children would search for similarities both between the geometrical 
configurations in the three cases and between the ways that corners, slopes, and turns are 
measured. (For example,. the, right angle plays a significant but different role in each context. 
But four right-angled corners, turns, or openings all fill the space around a point.) The 
similarities would be expressed in the standard angle diagram, and the. word "angle" used to 
name the emerging concept. Properties of the concept would then be studied (e.g., the standard 
method of measuring angles in degrees). Because the angle concept would have been abstracted 
from three superficially different contexts, it would be an abstract-general concept. 

The next stage would be to generalise the angle concept, first to slope and then to other 
contexts such as direction and rebounds. These contexts are more complex than corners, turns, 
and openings and need to be studied in their own right first. For example, slope involves the 
physical concept of horizontal so its inclusion in the angle concept must wait until the 

. / . 

corresponding physics is understood. 
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In a study funded by an ACU Large Grant, individual teaching experiments are currently 
under way to investigate how easy it is teach children in Years 2 and 4 to recognise angular 
similarities between corners, slopes, turns, and openings. 

Example 3: Fractions 

Hunting (1995) has shown conclusively that children often form a concept of "one-half' 
before primary school. He writes: "To understand 'one-half in a deeper sense, a child must 
recognise something· which several different mathematical structures have in common" (p. 
122)." For example, they must realise that, whenever they meet halves, two of them will 
always be equal and together make up the whole. They can only do this by experiencing many 
halving situations, reflecting on their similarities, and ignoring their differences (such as when 
one half of an apple has a blemish and the other is clear). It would appear that students 
abstract the concept of one-quarter in a similar fashion a little later. 

The next step seems to be the formation of concepts of one-eighth (and po:ssibly one­
sixteenth) and three-quarters (and possibly three-eighths, etc.) by operating on one-half and 
one-quarter in various contexts and again noticing similarities among the relations between the 
various fractions in the different contexts. For example, three-quarters may be abstracted from 
experiences of three-quarters of an hour, three-quarters of a cuP? centre three-quarter at 
football, and sO on, linked to the knowledge that three-quarters in each case comes half way 
between half and full. How rapidly this abstraction is made probably depends on the activities 

" " 

the child regularly engages in; cooking and music seem to be particularly rich contexts for the 
use of fractions. 

Generalisation, firstly to fractions of the form ~ and then -;;-, probably occurs as a result 
of reflection on the similarities underlying the binary fractions already abstracted. In informal 
research studies, my students have frequently reported cases of 10-year old children who 
seem to have a solid concept of one-quarter but only as a half of a half; at least, this aspect 
appears more important to them than the fact that there are four quarters in awhole. Similarly, 
many children of the same age seem to have a concept of three-quarters but not to realise that 
three-quarters is three times as much as one-quarter. It is a conscious awareness of such 
relations, we suggest, which enables children to conceive of dividing anything into any number 
of equal parts and then combining them to form general fractions. We do not believe that the 
general fraction concept is formed by abstracting the similarities between general fractions in 
different contexts: Fractions like t of an hour, t back at footba!J, and t time in music simply 
do not occur outside of textbooks. 

Understanding of fractions therefore seems to develop rather differently from 
"understanding of angle. Children do not form developed fraction concepts in different contexts 
and then abstract a more general concept later. Teaching fractions for abstraction would thus 
proceed rather differently than teaching angles for abstraction. 

The first stage would be to assist children to abstract concepts of t and t from familiar 
examples of these fractions-perhaps as early as Kindergarten. The next stage would be to 
extendchildren's fraction concepts to include land t (and possibly l~' i, etc.) by finding 
these fractions in familiar contexts, exploring thejr relations to other fractions in those 
contexts, and then identifying the similarities between the contexts. Their fractiqn concepts 
would be abstract-general if they are seen to apply to all fractions contexts in a similar way. 
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Relations such as t + t = t would be seen to be expressions of familiar, general relations 
rather than the results of formal calculations. 

The third stage of teaching fractions for abstraction would consist of generalising the 
structure inherent in the familiar fractions, still in familiar contexts but with an immediate 
recognition that a general structure is being constructed. For example, one would ask what 
"one fifth" or "two thirds" could mean and then look for examples of them in familiar 
contexts. The next stage would be to investigate how to combine unfamiliar fractions-but still 
in familiar contexts. This might include, for example, finding t of t of a cup of milk in order 
to reduce a recipe for 3 people to one for 2 people-first practically and then through 
reasoned pictorial arguments. The final stage would be to search for means of operating on 
fractions symbolically, and would lead to the standard "four rules" for fractions. 

Principles of Teaching for Abstraction 

.. The above examples illustrate the three essential principles of Teaching for Abstraction: 
familiarity, similarity, and reification. 

Familiarity. Students become familiar with several examples of the concept (i.e., several 
contexts from which the concept will be abstracted) before teaching the concept itself. These 
may be objects (e.g., tiles, furniture, road maps), operations (e.g., cutting, painting, filling, ... ), 
or abstract ideas (e.g., half, turn, rectangle, ... ). The examples are discussed using the natural 
language peculiar to each context (e.g., corner, slope, turn, opening), not that of the concept to 
be abstracted (e.g., angle). However, the teacher will anticipate the abstraction to be made later 
(e.g., by including examples of slopes and turns in which the two arms of the abstract angle are 
clearly visible). 

Similarity. The concept is taught by fmding and making explicit the similarities underlying 
familiar examples of that concept. The similarities may be superficial (e.g., between the 
appearance of corners and scissors) or structural (e.g., between the way familiar fractions are 
related in different contexts). Whichever it is, students' attention is directed to the critical 
attributes which define these similarities and which are embodied in the concept to be 
abstracted (e.g., the uniformity assumption underlying the area concept). The teacher then 
introduces the specialist language associated with the concept and uses this vocabulary to 
"define" the concept (in the sense of making it more definite) by showing how it relates to the 
similarities on which it is based 

Reification. As students explore the concept in more detail, it becomes increasingly a 
mental object in its own right, detached from any specific context. Almost any use of the 
concept is likely to assist its reification, providing the relation between the abstract concept 
and familiar examples of the concept is maintained. Some possibilities: 

• Find how to use the concept in practice (e.g., by estimating the area of the school on a 
map). 

• Investigate how to operate on the abstract concept, but always relate the results to 
some familiar context (e.g., calculating t of t and then checking it using a diagram). 

• Define and work with special cases (e.g., percentages as special fractions). 
• Look for generalisations involving the concept (e.g., area formulae). 
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Teaching for Abstraction clearly has much in common with other constructivist 
approaches, and many of their principles apply equally well. One difference is that Teaching 
for Abstraction has no problem with the fact that much of the content of school mathematics 
is pre-determined. Our belief is that, instead of merely hoping that abstract mathematical ideas 
will develop as a result of cooperative learning, reflection on experience, and so on, a more 
deliberate attempt to foster the abstraction of crucial mathematical concepts would pay 
handsome dividends in terms of student learning and understanding. 
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