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This paper reports on a study of seven Year 3 students' diminished performance in addition 
and subtraction mental computation. Although all students were identified as being 
inaccurate, three students used some variety of mental strategies, while the other students 
used only one strategy that reflected the written procedure for each of the addition and 
subtraction algorithms taught in the classroom. Interviews were used to identify students' 
knowledge and ability with respect to number sense (including numeration, number and 
operations, basic facts, estimation), metacognition, affects, and memory. Two conceptual 
frameworks were developed, one representing the flexible mental computers, and the other 
representing the inflexible mental computers. These frameworks identified factors and 
relationships between factors that influence flexibility in these inaccurate mental 
computers. The frameworks were compared with a framework of an ideal mental computer. 
These frameworks showed that inaccuracy resulted from disconnected and deficient 
cognitive, metacognitive, and affective factors; and in some cases might have been affected 
by deficient short-term memory. It appeared that students' choices of mental strategies 
resulted from different forms of compensation for varying levels of deficiencies. 

Researchers and educators have stressed the importance of including mental 
computation in number strands of mathematics curricula (e.g., McIntosh, 1996; Reys & 
Barger, 1994; Sowder, 1990; Treffers & de Moor, 1990; Willis, 1990). Reasons for its 
inclusion are that mental computation: (1) enables children to learn how numbers work. 
make decisions about procedures, and create strategies (e.g., Reys, 1985; Sowder, 1990); 
(2) promotes greater understanding of the structure of number and its properties (Reys, 
1984); and (3) can be used as a "vehicle for promoting thinking, conjecturing, and 
generalizing based on conceptual understanding" (Reys & Barger, 1994, p. 31). In effect, 
mental computation promotes number sense (National Council of Teachers of 
Mathematics, 1989; Sowder, 1990). In fact, Willis (1992) suggested that mental 
computation should be the main form of computation, with written computation to serve as 
memory support. However in the existing Queensland curriculum document, Years 1 to 10 
mathematics teaching, curriculum and assessment guidelines (Department of Education, 
Queensland, 1987), addition and subtraction mental computation is not mentioned. 

Proficiency in mental computation has been the focus of several research projects (e.g., 
Beishuizen, 1993; Heirdsfield, 1996; McIntosh & Dole, 2000; Reys, Reys, Nohda, & 
Emori, 1995). In The Netherlands, where mental computation is taught before written 
computation, mathematics programs emphasise the use of aggregation (NI0) as a more 
efficient mental strategy. However, weaker students tended to use less efficient separation 
strategies (Beishuizen, 1993). Reys, Reys, Nohda, and Emori (1995) found that accuracy in 
mental computation was associated with strategies other than mental image of pen and 
paper algorithm. In contrast to these findings, McIntosh and Dole (2000) reported higher 
accuracy when students employed mental image of pen and paper algorithm than when 
they employed alternative mental strategies (although these alternative strategies revealed 
number sense). Heirdsfield (1996) also found that accuracy in mental computation did not 
need to be accompanied by employment of a variety of efficient mental strategies. 
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Therefore, while some research appears to indicate that accuracy in mental computation is 
a result of efficient mental strategies, other research has reported accuracy as a result of 
employment of strategies that reflect pen and paper algorithms. 

Research undertaken by this author investigated mental computers and the factors that 
supported accuracy and flexibility (Heirdsfield, 1998, 2001a, 200Ib). This study 
investigated the part played by number sense knowledge (e.g., numeration, number facts, 
estimation and effects of operations on number), metacognition (metacognitive knowledge, 
strategies and beliefs), affects (e.g., beliefs, attitudes), and memory (working memory -
Baddeley, 1986 - and long term memory) in mental computation. It showed that students 
proficient in mental computation (accurate and flexible) possessed integrated 
understandings of number facts (speed, accuracy, and efficient number facts strategies), 
numeration, and number and operation. These proficient students also exhibited some 
metacognitive strategies and metacognitive beliefs, and affects (e.g., beliefs about self and 
teaching) that supported their mental computation. Further, proficient mental computers 
had good short-term recall to hold interim calculations and recall number facts, and well 
developed central executive (in working memory) to attend to the demanding task of 
mental computation and retrieve strategies and facts from a well-connected knowledge 
base in long term memory. Proficient mental computers chose alternative and efficient 
strategies, as they possessed extensive and connected knowledge bases to support these 
strategies. Thus, there was evidence of the importance of connected knowledge, including 
domain specific knowledge, and metacognitive strategies, affects and memory for 
proficient mental computation. As a result of this study, a conceptual framework 
identifying associated factors involved in proficient mental computation was developed 
(Heirdsfield, 2001 b). 

This leads to the question as to what are the effects on mental computation of less 
knowledge and fewer connections? It would be expected that one effect would be less 
accuracy. The purpose of this paper is to report on seven students who were inaccurate in 
addition and subtraction mental computation, but they exhibited differing levels of 
flexibility of mental strategies. These students were participants in a study that investigated 
addition and subtraction mental computation in Year 3 students (Heirdsfield, 200 1 c). 
Conceptual frameworks for these inaccurate students are developed and compared with a 
framework for the "ideal" mental computer (flexible and accurate) that was developed in 
the large study from which these students were drawn. 

Method 

Participants 

The participants were seven students, selected from a population of sixty Year 3 
children from three classrooms, representing two Independent schools in Brisbane. Both 
schools served students from high and middle socio-economic areas. The students were 
selected on the basis of an interview that identified accuracy and flexibility in mental 
computation. Although all students were considered inaccurate, three students employed 
some variety of strategies; therefore they were identified as flexible. The other four 
students employed a single strategy consistently. Therefore, these four students were 
identified as inflexible. 
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Instruments 

The students were presented with· a series of tests and indepth interviews. These were 
number fact knowledge, mental computation (one-, two-, and three-digit addition and 
subtraction), computational estimation, numeration, effects of operation on number, and 
memory. In order to choose neuropsychological tests relevant to these aspects, Lezak 
(1995) was consulted. The neuropsychological tests, which were used with the Year 3 
students, were aimed at investigating short-term recall and executive functioning. The tests 
were modifications of a Digit Span Test (short-term recall) and a maze test (central 
executive, e.g., planning and attention). 

Further, questions were asked addressing attribution, self-efficacy, beliefs, and 
metacognition. The students were also required to complete the Student Preference Survey 
(SPS) (McIntosh, 1996), to identify whether they would and could solve computational 
tasks mentally. 

Procedure 

The students were withdrawn from their classroom on a one to one basis, and 
interviewed in a quiet room. The interviews were videotaped, and each interview session 
lasted for no more than 30 minutes at a time. Because of the variety of aspects covered, 
each child received four interview sessions (three sessions in the pilot study). 

Analysis 

For the purposes of identifying flexibility in mental computation, mental computation 
strategies were identified using the categorisation scheme (based on Beishuizen, 1993; 
Cooper, Heirdsfield, & Irons, 1996; Reys, Reys, Nohda, & Emori, 1995) that divided the 
strategies into the following categories: (1) separated (e.g., 38+17: 30+ 10=40, 8+7 = 15 = 
10+5,40+10+5 = 55 - separation left to right; 38+17: 30+10=40,40+8=48,48+9=57 -
cumulative sum); (2) aggregation (e.g., 38+17: 38+10=48,48+7 = 55); (3) wholistic (e.g., 
38+17 = 40+17-2 = 57-2 = 55); and (4) mental image of pen and paper algorithm -
following an image of the formal setting out of the written algorithm (taught to almost 
automaticity in the schools the students attended). 

The analysis of the interviews incorporated three stages. First, each interview for each 
student was analysed separately. Second, relationships across interviews for each student 
were considered (e.g., whether understanding of the effect of operations on number was 
used for mental computation, whether the same number facts strategies were employed in 
both the number facts test and in the mental computation interview). Third, analysis 
compared commonalities and differences across students. 

Mental computation responses were analysed for strategy choice, flexibility, accuracy, 
understanding of number facts, computational estimation, numeration, and the effects of 
operations on number. It was also noted whether the students could access alternative 
mental strategies, when encouraged to do so. Number facts were analysed for accuracy, 

. speed and strategy choice. Estimation strategies were identified and proficiency and 
flexibility were noted. Analysis of students' responses to numeration tasks was based on 
Ross's five levels (1986), which included canonical and noncanonical understanding of 
number. Also, evidence of multiplicative understanding (e.g., ten tens are the same as one 
hundred) was investigated. The tasks addressing the effect of operations on number were 
analysed for understanding of arithmetic properties (e.g., associativity, inverse, the effect 
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of changing the addend and subtrahend) as they apply to computational relationships (e.g., 
70-43=27, :.70-44=26). 

For the analysis of the memory tests, Lezak: (1995) was consulted. As so few students 
were interviewed, it was decided to compare individuals' raw scores for the Digit Span 
Test, and note any trends with memory problems evident in mental computation tasks. The 
maze completion times and the number of errors, such as retracing lines or entering blind 
alleys, were recorded. Although there might be a tenuous link between executive 
functioning in completing mazes and executive functioning in completing mental 
computation tasks, the fact that a student could attend toa task and plan would affect 
mental functioning in any domain. Evidence for planning and decision-making was 
compared with the same in the mental computation interviews. 

Results 

Comparison of Flexible and Inflexible Inaccurate Mental Computers 

Although all students were inaccurate, there were differences in the mental 
computation strategies they employed. These strategies appeared to be used to compensate 
for limited and disconnected knowledge. A comparison between the flexible and inflexible 
students is made in Figure 1. 

Mental 
computation 

Number facts 

Computational 
estimation 
Numeration 

Numberand~ 

operation 
Metacognition 

Affects 

Working 
Memory: 

Not accurate and flexible (n=3) 
Strategies: Separation strategies only 
(left to right, right to left, cumulative). 
Alternative strategies: yes (including 
wholistic), but not always successful. 
Accuracy: accurate for addition, 
generally slow and inaccurate for 
subtraction 
Strategies: Derived Facts Strategies 
(DFS), recall, and count. Used count 
mostly in mental calculations. 
Varied 

Varied, canonical, noncanonical, 
proximity of numbers. 
Mostly poor. 

Some strategies, mostly inaccurate 
beliefs. 
Varied beliefs and no strong beliefs 
evident. 
Evidence of central executive (planning 
and attention). ST recall score: ;::: 6 

Not accurate and inflexible (n=4) 
Strategies: Used mental image of pen and 
paper algorithm. 
Alternative strategies: yes, but rarely 
successful 
Accuracy: inaccurate and slow 
Strategies: DFS (very few though), recall, 
and count. Used count mostly in mental 
calculations. 

Mostly poor. 

Generally poor, mostly only canonical 
understanding with materiaL 
Mostly poor. 

Mostly no strategies, inaccurate beliefs. 

Varied beliefs. 

Evidence of diminished central executive. 
ST recall score: ~ 5 

Figure 1. Comparison of flexible and inflexible inaccurate mental computers. 

In general, both groups of students lacked sufficient understanding of number facts, 
estimation, numeration, and number and operation to support advanced mental 
computation strategies. Although the students were unsuccessful with the taught 
procedures, the flexible students attempted to compensate by inventing strategies, although 
most (but not all) of these strategies were not high order strategies. Some number facts 
strategies, numeration understanding, and metacognitive strategies assisted the 
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employment of alternative mental calculation strategies. Thus, the flexible students 
attempted to compensate for their lack of procedural understanding, but their knowledge 
was diminished and disconnected. On the other hand, the inflexible students attempted to 
compensate by employing the teacher taught strategy, which required little conceptual 
understanding (and also provided a mental image to support memory). However, because 
of a lack of procedural understanding, errors still resulted. None of the inflexible students 
held accurate perceptions of their mental computation abilities. Also, poor short-term recall 
and diminished executive functioning compounded these deficiencies. In other words, their 
knowledge was so deficient and disconnected, even strategies that had been taught (but not 
learnt) could not be followed. 

Results of Flexible Students 

The three flexible students used some variety of strategies, but few high order 
strategies. Most strategies were separation (left to right, right to left, and cumulative 
sum/difference). Although, one student also attempted to employ aggregation left to right 
and wholistic strategies for addition in the indepth interview. 

Figure 2. Conceptual framework for inaccurate and flexible computation. 

In general, the students lacked sufficient understanding of number facts (although some 
efficient strategies were employed), numeration, and number and operation to support 
advanced mental computation strategies. Estimation was poor and, thus, did not support 
mental computation. Further, these students were unsuccessful with the taught 
computational procedures, so they compensated by inventing strategies, although most (but 
not all) of these strategies were nor high order strategies. Some numeration understanding 
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and metacognitive strategies assisted mental calculation using alternative strategies. The 
students were unable to use teacher taught procedures to compensate for their deficiencies. 

Thus, lack of procedural understanding of the pen and paper procedures resulted in the 
students' inventing mental strategies. However, as they did not possess sufficient 
understanding of number facts and number and operation, they were rarely successful. 
Some numeration understanding and metacognitive strategies assisted the invention of 
mental strategies, however, there was insufficient understanding to support high-level 
mental strategies. Thus, they attempted to compensate for their lack of procedural 
understanding, but their knowledge was disconnected. A conceptual framework for the 
inaccurate and flexible students is presented in Figure 2. This framework was developed in 
comparison to that of a proficient mental computer (Heirdsfield, 2001b). To show missing 
factors, cells are left unshaded. Dappled effect in cells indicates that knowledge was at a 
threshold level (compared with proficient mental computers). Arrowheads are eliminated 
to show disconnected knowledge. 

Results of Inaccurate and Inflexible Students 

The four inflexible students predominantly employed mental image of pen and paper 
algorithm. They all reported "seeing" or imagining the vertical format of the pen and paper 
algorithms. 

~ 
"< example 

example 

contributato 

~ ~.~. 
~ 
~ 

Figure 3. Conceptual framework for inaccurate and inflexible mental computation. 

In general, poor number facts knowledge (i.e., inaccurate), and poor understanding of 
estimation, numeration, and number and operation contributed to inaccuracies in mental 
computation, and the inability to access alternative strategies. Also, poor short-term recall 
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and diminished executive functioning compounded these deficiencies. To compensate for a 
poor knowledge base and memory overload, they attempted to employ an automatic 
strategy, which required little conceptual understanding (and also provided a mental image 
to support memory). However, because of a lack of procedural understanding, errors still 
resulted. None of these inflexible students held accurate perceptions of their mental 
computation abilities. Finally, the inflexible students exhibited little or no understanding of 
any of the factors investigated in relation to mental computation, resulting in deficient and 
disconnected knowledge. 

In summary, the students exhibited deficient and disconnected knowledge. To 
compensate, the students resorted to an automatic strategy, but lack of procedural 
understanding and other deficiencies resulted in inaccurate application of this strategy. A 
conceptual framework for the inaccurate and inflexible students is presented in Figure 3. 
This framework was developed from that of the proficient mental computer. To show 
missing factors, cells are left unshaded. Dappled effect in cells indicates that knowledge 
was at a threshold level (compared with proficient mental computers). Arrowheads are 
eliminated to show disconnected knowledge. 

Discussion 

Some key differences between the two groups of inaccurate computers were number 
fact strategies, numeration understanding, metacognitive strategies, and working memory. 
It was interesting how different forms of compensation resulted from different knowledge 
bases. 

It would seem obvious that knowing number facts by immediate recall would aid in 
mental computation, as there would be less memory load. Many of the flexible students 
(and to less extent the inflexible students) used efficient Derived Facts Strategies (c.f., 
count) when they could not recall number facts in the number facts test. However, they 
resorted to count for calculating interim calculations during mental computation. The 
reason might lie in the extra load placed on working memory when DFS are employed. 
Count seems to be a more primitive strategy that they and the inflexible students resorted 
to for interim calculations. Therefore, permitting students to use pen and paper would 
alleviate working memory load due to lack of number fact knowledge. Further, students 
should be encouraged to develop efficient DFS, where understanding rather than speed is a 
focus. 

Some numeration understanding supported alternative low-level mental computation 
strategies. However, overall, numeration understanding was lacking in both groups of 
students. Whether teaching numeration as prerequisite knowledge is necessary or whether 
numeration understanding can be improved in conjunction with computational 
understanding is open to question. The success of teaching experiments (e.g., Buzeika, 
1999; Kamii, 1989) where students are encouraged to formulate and discuss self-developed 
computational strategies seems to indicate that the development of efficient computational 
strategies has a positive effect on the development of numeration. 

Most importantly, students need to realise that mathematics should make sense. More 
emphasis should be placed on students making meaning, rather than students learning 
procedures that are not/cannot be successfully employed. 
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