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The development of students' algebraic understanding is generally accepted to be one of the 
major goals of K-12 mathematics teaching. In this paper I attempt to examine this 
understanding by characterising a group of high school students' algebraic knowledge and 
patterns of use of that knowledge during the solution of selected problems. Results show 
that these students tended to show acceptable levels of proficiency with problems that 
involve substitution of values for variables, and simplification of equations. However, 
students experienced difficulties with the solution of equations and the interpretation of 
variables both in symbolic and graphical modes. These results are interpreted as suggesting 
that the participating students' understanding was buttressed mainly by schemas that were 
dominated by procedural knowledge of algebra. 

Introduction 

Algebra provides conceptual foundation for the understanding of other concepts that 
students encounter in the school mathematics curriculum. The importance of this area of 
mathematics has been underlined by the increasing attention the teaching and learning of 
algebra has received over the past decade from teachers and researchers alike. Children's 
understanding of algebraic concepts begin in the early years of their school life and 
continues throughout their mathematics learning experiences in high school and beyond. 

The ubiquity of the subject matter of algebra in K-12 mathematics curriculum further 
attests to its critical role in helping students develop an appreciation of links that exists 
among other topics in mathematics. Indeed, this issue has been given considerable attention 
in the agenda of major curricular documents (National Council of Teachers of 
Mathematics, 1989, 2000). The recently concluded 12th ICMI Study on the theme, 'The 
Future of the Te~ching and Learning of Algebra' further highlights the importance of 
algebra and brought into focus the many difficulties faced by students in learning algebra. 

Despite significant strides that we have made in improving students' confidence and 
competence in using algebraic skills and concepts, it has been suggested that more work 
needs to be done in this area as students continue to experience difficulty in going beyond 
the meaningless manipUlation of equations and symbols (Chazan, 1996). In the study 
reported here I address this issue by exploring the nature of algebraic knowledge that drives 
students' cognition during problem solving. 

Theoretical Considerations 

Connections and Mathematical Understanding 

The development of mathematical understanding has been analysed from a number of 
vantage points. Of these, the investigation of connections constructed by students has been 
the theme of recent debate. It has been suggested that children learn mathematics best when 
they are encouraged to 'organise their information through making many connections and 
forming relationships' (Sowder, 2001, p. 4). Hence the analysis of connections seem to 
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provide an effective research strategy in the examination of mathematical understanding. 
The focus on connections has had a long history in psychological literature on concept 
development and problem solving not only in mathematics but also other domains such as 
geometry, chess and physics. In their analysis, Carpenter and Lehrer (1999) characterised 
mathematical understanding as involving problem solving, constructing relationships and 
reflecting on one's own previous experiences with a particular topic of mathematics. As 
mathematical understanding is a developmental process connectionist models are 
appropriate for describing relations between the above activities. The quality of the 
connections can also be expected to have a major impact on how that knowledge is used in 
a variety ofleaming situations (Schoenfeld, 1992). 

Research from cognitive psychologists and mathematics educators has advanced 
several theoretical frameworks about concepts and their growth. In this paper, I adopt the 
network perspective in making judgments about mathematics knowledge development. 
According to this view conceptual growth and mathematical understanding can be 
interpreted in terms of the building of organised knowledge clusters called schemas. 
Schemas can be visualised as knowledge structures or chunks having one or more core 
concepts which are connected to other concepts and/or schemas by relational statements. 

According to this framework of knowledge development, the quality of a schema is a 
function of two variables: the spread of the network and the strength of the links between 
the various components of information located within the network (Anderson, 2000). A 
complex schema can be characterised as having a large number of network of nodes that 
are built around one or more core concepts. Further, in a mature schema, the links between 
the various nodes in the network are robust, a feature which contributes to the ready 
accessing and use of that schema during problem-solving and other learning situations. A 
well-structured schema can also benefit students by helping them assimilate incoming new 
mathematical information with less cognitive effort. 

The acquisition of mathematical concepts in K-12 can be seen as the construction of 
schemas each with differing levels of organization and complexity. The difference between 
a good student and a poor student is that the good student has built up schemas that are 
more complex, dense and better organised than his low-achieving peer. Chinnappan (1998) 
used the schema framework to compare the quality of geometry knowledge between high- . 
and low-achieving students. Thus, a useful strategy would be to analyse the schemas of 
students for gaps in their knowledge, and organisational quality of conceptual nodes and 
links. According to the schema framework of knowledge and performance, an 
impoverished schema is not conducive to solving novel problems and describing relations 
among concepts in mathematics because it does not help students extend their prior 
knowledge to new boundaries of understanding. Such schemas can be characterised as 
having a limited number of conceptual points to connect with. 

Structure of Algebraic Schema 

While schema provides a broad theoretical framework for analysing organisational 
features of students' algebraic knowledge there is a need to disentangle components of the 
schema that underlies algebraic understanding. Literature on the development of algebraic 
understanding has advanced two constructs: procedural and structural conceptions. Broadly 
speaking, students who have attained procedural understanding can be expected to perform 
operations involving algebraic expressions such as simplifying equations. Conceptual 
understanding, on the other hand refers to the elucidation of relations between algebraic 
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expressions and components that make up a particular algebraic statement. Sfard (1991) 
used a process-object model to articulate the relationship between procedural and 
conceptual elements of algebra. 

Students' experiences with algebra begin with the acquisition of knowledge about 
procedures or operations that are used in dealing with algebraic situations. These 
procedures include strategies and rules for simplifying, factoring and solving equations. 
Also included in this set of skills is an understanding of conventions and symbols that are 
used to represent algebraic expressions. One such convention could be the use of letters to 
represent variables or f(x) to represent function of x. As students' experiences with algebra 
matures they are able to transfer knowledge of procedures to conceptual characteristics of 
relations. Kieren (1992) referred to this advancement as the evolution from the 'procedural 
to structural' (p. 413). She argued that most students learn procedural skills but do not 
make the transition to structural understanding. Tall and Thomas (1991) also alluded to this 
link in their analysis of the nature of difficulties faced by students in learning algebra. 
Students who have developed multiple representations of an algebraic relationship can be 
expected to show high levels of structural understanding of variables that are embedded in 
that relationship. 

The above analysis suggests that, among other things, algebraic schema consists of 
networks of nodes that are procedural and conceptual in nature. Accordingly, students who 
have built up a better connected and organised algebraic schema can be expected to make a 
smooth transition from the procedural to the conceptual aspects of the knowledge structure. 
For instance, in order for students to develop a sophisticated schema, say, about solution of 
quadratic equations, they need to make multiple connections among variables, families of 
equations and unknowns. As their schema becomes elaborated further one might expect to 
see information about how to use strategies in order to construct equations to model a 
problem situation. In this sense the maturation of schemas can be seen as progressing along 
the procedural-conceptual continuum. Thus, the construction of algebra schemas that are 
loaded with procedural information can be argued to be less complex than one that has 
more conceptual information. In a problem. situation both components of the knowledge 
base are necessary but conceptual knowledge is more useful in generating powerful 
representations of a given problem. In this sense, one could argue that the conceptual part 
of the schema in indicative of deeper learning of algebra. 

The purpose of the present study was to describe the quality of algebraic schema 
developed by a group of Year 10 students. In particular, I was interested to examine the 
level of procedural and conceptual knowledge that students could access in a number of 
problem contexts, and the integration of these knowledge components during problem 
representation. The research questions for this study are: 

• What is the nature of procedural knowledge that Year 10 students activate 
during the solution of algebra problems? 

• What is the nature of conceptual knowledge that Year 10 students activate 
during the solution of algebra problems? 

• Is there evidence of transition from procedural to conceptual understanding of 
algebra problems among Year 10 students? 
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Method 

Participants 

The participants in this study consisted of 58 Year 10 (Form 4) students (28 males and 
30 females) in a New Zealand secondary college. The students came from two classes 
representing 'average to above average' ability levels of the college's Year 10 cohort. All 
students had completed algebra topic. Students in the study also reflected the socio-cultural 
composition of the local community. 

Instrument 

The Algebra Schema and Access Instrument (ASAI) was developed for the study. The 
instrument contained 16 problems all of which required the accessing and use of algebraic 
knowledge. Problems 9, 14 and 15 consisted of two (9a, 9b), three (14a, 14b, 14c) and two 
parts (15a, 15b) respectively. An important consideration in the development of the 
instrument was the identification of algebraic schemas that teachers would expect from 
their Year 10 students. It is important to point out that I have used a problem-based schema 
identification approach, and that schemas activated by the students were necessarily limited 
by the problem contexts. It is possible that a non-problem based strategy could be expected 
to generate a different set of schemas. However, a problem-driven schema activation and 
use by the students could be argued to provide a more complete picture about the quality of 
schemas that students have built up because it has the potential to reveal more complex 
connections that exist not only within schemas but among schemas. The latter complex of 
connections among schemas has been argued to exert a major influence in the construction 
of problem representations (Sweller and Cooper, 1985). This line of reasoning was used in 
classifying the 16 problems into six representations (Table 1). A selected set of the 
problems from each category is provided in the Appendix. 

Table 1 
Problem Categorisation 

Problems 

1 and 2 

3 and 4 

5,6, 7, 8, 9 and 10 

11,12 and 13 

14a, I4b and 14c 

15a, I5b and 16 

Procedure 

Category 

A 

B 

C 

D 

E 

F 

Representations 

Factorisation 

Evaluation 

Solution of equations 

Word problems 

Pattern generation 

Graphical interpretation 

The class teachers administered the instrument to students during normal class periods. 
The study was conducted in the fourth term of the college's academic year. Students were 
given 60-90 minutes to complete the problems. Students were encouraged to attempt all the 
16 problems. They were also asked to write down every step in their solution attempts even 
if they did not arrive at the 'correct' answer. Students were permitted to use calculators if 
required. 
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The following scoring scheme was developed to code students' solution attempts. 
There were two major considerations in this scheme: solution approach and generation of 
relevant values. The fonner was concerned with problem representation and the latter 
factor provided infonnation on the use of schemas to generate values that were relevant to 
the problem representation. While solution outcome was important it was not the sole 
factor in the scoring scheme. The scheme was trialled with two independent coders who 
were mathematics teachers and researchers in order to resolve potential differences in the 
interpretation of the codes. The final scoring system was used to code students' solution 
transcripts. 

o - No attempt was made to solve the problem 
I - Solution was attempted but both the approach and values generated were 

incorrect 
2- - Solution was attempted with a correct approach but none of the values 

generated were correct or relevant; incorrect solution outcome. 
3 - Solution was attempted with a correct approach; one correct value was 

generated; incorrect solution outcome 
4 - Solution was attempted with a correct approach; two correct values were 

generated; incorrect solution outcome 
5 - Solution was attempted with a correct approach; three or more correct values 

were generated; correct solution outcome. 

Results and Discussion 

Results of analysis of students' solution attempts is presented in Table 2. The results 
show that students attempted all the 16 problems with varying degrees of success. The 
means and standard deviations indicate that some problems were more difficult (problems 
6-10, 13-16) than others (Problems 1, 2, 3, 11 and 12). From the representational angle the 
solution attempts reveal a number of patterns. Firstly, students constructed correct 
representations for most of the problems in category A and B, and a few problems in 
category C. In category D, students experienced more success with problems 11 and 12 in 
comparison with 13. In general, students experienced difficulty with the solution of all the 
problems in categories E (pattern generation) and F (graphical representation). In more than 
50% of the problems presented students scored mean values of 1 or less indicating failure 
to attempt or construction of incorrect problem representations. 
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Table 2 
Descriptive Statistics of Solution Scores 

Problems Mean SD 

1 2.55 1.59 

2 3.59 1.60 

3 4.64 1.18 

4 2.19 2.08 

5 2.12 1.76 

6 1.69 1.85 

7 1.71 1.36 

8 1.48 1.53 

9a 2.17 2.15 

9b 0.66 1.19 

10 1.09 1.42 

11 3.48 1.75 

12 4.48 1.41 

13 0.93 0.72 

14a 2.40 2.25 

14b 1.64 2.13 

14c 1.21 1.87 

15a 1.48 1.75 

15b 1.21 1.63 

16 1.02 1.10 

The present study attempted to answer three questions that are related to high school 
students' knowledge and understanding of algebraic concepts by examining schema 
activation and problem representation. The first question aimed at describing the quality of 
procedural knowledge of their schemas. Analysis of solution attempts to problems that 
mainly involved application of procedural skills (Category A and B) indicate that students 
had acquired a reasonable level of procedural knowledge of algebra. This was evidenced by 
the high proportion of success with problems that required substitution of numerical values 
into a given expression. Students also showed that they could expand and simplify 
algebraic expressions. However, students tended to experience difficulty in finding 
solutions to a number of equations that had a complex structure. Taken ,together, these 
results suggest that while students have built up a repertoire of process skills there were 
also knowledge gaps in their procedural knowledge. It is also possible that the solution of 
more complex equations in Category C required an understanding which needs to be 
supported by schemas that are more conceptually loaded. This suggests that students' 
algebraic schemas had more procedural than conceptual information. 

Analysis of solution attempts relevant to research questions two and three focused on a) 
students' conceptual understanding of algebraic expressions, and b) evidence of 
establishing links between conceptual and procedural elements in the given problems. The 
mean scores indicate a high proportion of the students could not generate equations to 
model a given situation, and solve that equation. In addition, students experienced 
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difficulty in representing and interpreting graphical forms of given equations (Category F). 
An equation is a symbolic form of a relationship that can be expressed· in a graphical 
mode. A large number of students who participated in this study failed to translate the 
symbolic to the graphical form of a given equation and vice versa. The present results are 
consistent with findings of a number of other recent investigations of problem solving that 
involves modelling of problems in terms of algebraic expressions (Nathan, Kintch, & 
Young, 1992; Schoenfeld & Arcavi, 1988). 

In the present study students performed poorly in a task that involved the 
establishment of a relation between two variables (M=1.21;SD=1.87). This problem can 
also be seen as exploring a pattern that exists between two sets of numbers. While a 
number of students could determine the value of one variable given the other, these 
students did not describe the overall relationship in any meaningful manner. These results 
reflect those obtained by Stacey (1989) who found that students had difficulty in reasoning 
that led to generalising a pattern among variables. 

Students also did not seem to understand the notion of ordered pairs (x, y), and that 
the is a rule that connects values x with values of y. This misunderstanding was evident in 
the solution attempt of Problem 10 where students were required to decide if a point was a 
solution to the given equation. It would seem that these students had yet to establish a link 
between the coordinates of the point and the rule that was expressed in the equation. The 
mean score for this problem was 1.09 suggesting most students did not attempt or used an 
incorrect representation. Solution attempts to Problem 10 again provides further support to 
the claim that students' algebra schema lacked appropriate conceptual information. 

On a more general level, the results of the present study are relevant to the debate 
over the causal relations between procedural and conceptual knowledge not only in the 
solution of algebra problems but mathematical problems. The present result is consistent 
with earlier research by Rittle-lohnson and Alibali (1999) who found that conceptual 
knowledge has a greater influence not only on the understanding of problems but also on 
the further development of procedural knowledge. 

While it is too early to speculate, the present findings do suggest that teaching needs 
to focus on the development of both procedural and structural or conceptual aspects of 
algebra. It seems that higher levels of procedural skill development is a necessary but not a 
sufficient condition for students to solve problems that involve generation and 
manipulation of variables in an equation. Thus, classroom learning experiences need to 
make explicit the connections between these two aspects of algebraic knowledge. 

This study represents a modest attempt at exploring the construction of representations 
for algebraic problems and the nature of schemas that support that construction. While 
there is some support here for the claim that teaching and learning algebra needs to focus 
on facilitating the building of more conceptually based schemas there is a need for a fine­
grained analysis of algebraic schemas that drive problem representation. 
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Appendix 

Factorise the expression 3x2 + 6x - 9 

If f(x) = 3x2 -7x, what is the value of f(2.5)? 

h . 6 
Solve t e equatlon x + - = 5 

x 

A photograph is 3cm longer that it is wide. Its area is 40 cm2 

Find its length and width. 

a) What is P when Q = 3? 
b) What is P when Q = n? 
c) Describe the relationship between P and Q. 

1 

_Q p 

1 1 
3 ? 
4 10 
6 16 
n 

11 
? 

1 

15(a). Graph the equation 5y = -15 + 3x in Figure A. (Figure A is a grid with x andy coordinates) 

16 If you start with the light line, what would you do to get to the other line (dark)? (The light and dark 
lines were provided in a grid with x and y coordinates) 
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