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Since 1997, there has been a very strong incentive from the French Ministry of 
Education for promoting the integration of information technologies in education at all 
levels. Among various actions, the Ministry provided a financial support for organizing pre 
and in service teacher education (IUFM) at national and local levels. The renewed 
curricula offer a real integration of technology into the teaching of mathematics and they 
claim the necessity of this integration: the use of dynamic geometry software programs and 
spreadsheets is compulsory. 

It is quite difficult to estimate the proportion of teachers making a real use of 
technology. But it should be around 20%. One can be surprised by the gap between the 
institutional situation promoting technology and the real situation in classroom. One can 
seek the reasons for this reluctance by the changes of several kinds introduced by 
technology: 

• changes in the concepts as mediated by the environment 
• changes in the tasks given to students 
• changes in the management of classroom, due to a growing autonomy of the 

student due to technology 
Technology allows new kinds of tasks revealing the meaning of theoretical objects. 

But creating these new tasks is not easy and requires time. We will present below the 
learning tasks of a new type allowed by dynamic geometry software and try to explain why 
it takes time for teachers to design and use these tasks. Examples will be given in Cabri­
geometry, existing both as a software program or application of the calculators TI 92, TI 
89 and TI 83. 

I - The Spatial and the Theoretical 

Dynamic geometry software based on direct manipulation offer a microworld in which 
theoretical objects and relations (sometimes very complex from a conceptual point of 
view) can be visualized and physically manipulated. Such kind of environments offers the 
possibility for students of constructing knowledge in action and not only by having 
recourse to language. At first, some theoretical distinction will be made. 

11 - The Distinction Between Spatial and Theoretical Properties 

Physical space and geometry as a theory are two separate domains. Space is 
considered here as part of reality and geometry as a set of theories partly modelling space 
but also developing its own questions and solutions. 

Diagrams in 2D geometry play an ambiguous role: one the one hand they refer to 
theoretical obj ects whereas on the other hand they offer graphical - spatial properties 
which can give rise to a perceptual activity from the individual. For example, the diagram 
in Figure 1 represents a parallelogram. 
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Figure 1. Diagram representing a parallelogram. 

It presents several graphical-spatial properties like two sides are horizontal, the two 
other are oblique with a given direction (bottom left to top right), the opposite sides are 
parallel, the horizontal sides have a given length. Note that these properties are selected 
among a larger set of properties like the colour or the width of the sides. Some of these 
graphical-spatial properties can be interpreted in a geometrical way, some of them would 
not be considered as interesting from a geometrical point of view. For example, the 
position of the diagram in the sheet of paper is generally considered as not relevant in 
geometry. The slope of the side may also be not relevant, it depends on the problem in 
which the parallelogram occurs. Some graphical-spatial properties of the diagram are 
incidental with respect to the geometrical problem to be solved, some other are necessary 
like the parallelism properties. Furthermore some graphical-spatial properties necessarily 
follow from other ones. So there is a link of necessity between the parallelism of opposite 
sides and the fact that the intersecting point of the diagonals also is their midpo~nt. The 
teaching of geometry deals with these links of necessity between graphical-spatial 
properties. But one can understand the nature of these links if and only if one also can 
understand that some other links are incidental. Necessity makes sense as opposed to 
contingence. Geometry may appear as useful if it allows you to predict, to produce or to 
explain graphical-spatial properties of diagrams thanks to these necessity links. But it 
requires the awareness of the distinction between graphical-spatial properties and 
theoretical geometrical properties. 

This ambiguous role of diagrams is completely implicit in the traditional teaching of 
geometry in which theoretical properties are assimilated into graphical ones. It is as if it is 
possible to abstract from the diagram the properties of the theoretical object that is 
represented by this diagram. One of the consequences is that pupils often draw the 
conclusion that it is possible to construct a geometrical diagram using only visual cues; or 
to deduce a property empirically by checking on the diagram. When pupils are asked by 
the teacher to construct a diagram, the teacher expects them to work at the level of 
geometry using theoretical knowledge whereas pupils very often stay at the graphical level 
and try to satisfy only visual constraints. 

The task of drawing a tangent line to a circle passing through a given point is 
frequently viewed by pupils as the physical task of rotating a straight edge passing through 
the given point and adjusting it in order to "touch" the circle (Figure 2). 

Figure 2. Tangents to circles task. 
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The teacher is expecting a drawing process based on geometrical relations - the tangent 
line is perpendicular to the radius and the locus of points from which it is possible to see a 
segment under a right angle is a circle. 

The problem is that the final result may not be better from a visual point of view in this 
latter case than in the fonner one ... Some traditional construction problems may fail to call 
for geometrical knowledge. 

Therefore diagrams instead of helping students may become an obstacle to geometrical 
thinking in the sense that they avoid reasoning in theoretical tenns (Fishbein, 1993; 
Mariotti, 1995; Salin, & Berthelot, 1994; Duval, 1998). Several investigations show that it 
is not easy for beginners in geometry to identify in a diagram the properties relevant from a 
geometrical point of view. Argaud (1998, pp. 290-297) could observe how it is difficult for 
children at the end of primary school to recognize a quadrilateral, parallel or perpendicular 
segments: 

a- Is D a quadrilateral ? 

Figure 3. 

14 children over 26 answer yes. 

b - Is J a quadrilateral ? 

Figure 4. 

10 children over 13 answer yes. The given arguments are: it has 4 sides even it is not 
finished (8 children), it has 4 sides (1 child), it has 4 edges (1 child). 

c - Are the segments parallel ? 

Figure 5. 

16 children over 24 say that they are not parallel. The given arguments are: the segments 
are not opposed, or one is shifted, or they are not of same length. 
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L2 - Diagrams in Computer Based Environments 

Spatial-graphical and geometrical aspects are very much interrelated in the new kind of 
diagrams provided by geometry microworlds: these microworlds offer diagrams whose 
behaviour is controlled by theory. In dynamic geometry microworlds like Cabri-geometre 
(Laborde & Straesser 1990), diagrams result from a sequence of primitives expressed in 
geometrical terms chosen by the user. When an element of such a diagram is dragged by 
means of the mouse, the diagram is modified preserving all geometric relations used in its 
construction. These artificial realities could be compared to entities of the real world: it is 
as if they react to the manipulations of the user by following the laws of geometry just like 
material objects react by following the laws of physics. A crucial feature of these realities 
is their quasi-independence of the user as soon as they have been created. When the user 
drags one element of the diagram, this latter is modified according to the geometrical way 
it has been constructed and not to the wishes of the user. This is not the case in paper and 
pencil diagrams which can be slightly distorted by the pupils in order to meet their 
expectations. Computers diagrams are external objects whose behaviour and feedback is no 
longer controlled by the user as soon as they have been created. Their behaviour requires 
the construction of an interpretation by the pupils. Geometry is a means, among others, of 
interpreting the behaviour of these computer diagrams. 

11 - Tasks in Dynamic Geometry Software Fostering the Learning of 
Geometry , 

The link between the spatial graphical and the geometrical properties of a diagram are 
reinforced in a dynamic geometry environment, as said above. This feature may be used to 
design tasks in which students will learn to link visual aspects to geometrical properties. 

We propose to categorize the possible tasks to be offered in dynamic geometry 
environment in four categories of tasks with respect to visual phenomena produced by the 
environment 

• tasks for interpreting visual phenomena 
• tasks for producing or reproducing visual phenomena 
• tasks for predicting visual phenomena 
• tasks for explaining visual phenomena 

In all these tasks, geometry provides a tool of solution. 

IL1- Tasks/or Interpreting Visual Phenomena 

This kind of tasks is adequate for beginners, especially at primary school. A dynamic 
Cabri- diagram is given at the screen of the computer and the children must describe it in 
terms of geometrical properties. An example is given in Figure 6, in which a quadrilateral 
is displayed on the screen. It looks like a square; if one of its vertices is dragged, it is 
visible that its sides are no longer equal but that it still has four right angles. If another 
vertex is dragged, it becomes visible that some of its angles are no longer right. The 
children must observe more precisely the behaviour of the diagram to identify the invariant 
properties in the drag mode: one of the pairs of opposite sides remains parallel in the drag 
mode. 

In this kind of tasks, children learn to recognize a geometrical property from its various 
spatial-graphical representations. 

At another school level, we also used this type of tasks for introducing new 
transformations. A point P and its image P' through the unknown transformation were 
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given to the students (Jahn 1998). They could move P and observe the subsequent effect on 
P'. Students were asked to find the properties of the unknown transformation by means of 
this black box. In such a task students must themselves ask questions about the 
transformation : 

n 
LJ 

Figure 6. 

Does it preserve collinearity ? Does it preserve distance ? Does it have invariant points 
? 

Cabri can be used to design experiments and get empirical answers. For example, one 
may redefine P as belonging to any given straight line and obtain the image of this line as 
the Locus of P' depending on the variable point P. Two specific tools of Cabri are used 
"Redefinition" and "Locus". It presupposes that the students not-only master their use but 
also decide to use them. This decision actually involves mathematical knowledge: the fact 
that the image of a figure is the set of images of points of a figure; this is often completely 
implicit in our curricula but it presents a conceptual cut (even obstacle probably from both 
cognitive and didactical origin) with the view of a figure as an entity and not as a set of 
points. 
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Figure 7. - Redefining the given point P ... Figure 8. - as a point on ... 
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Figure 9. - a line Figure 10. -Locus ofP' when P moves on the line 
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Figure 11. Locus ofP' when PIS movmg on a cIrcle. 

Such a task offers a very different point of view on the notion of geometrical 
transformation. Instead of studying the effects of a known transformation, students are 
asked to characterize the transformation by means of its properties. Of course this may be 
an attractive task only if some exotic transformations and not only the usual ones are given 
to students. Theorems of invariance receive a new meaning in this kind of task: they are 
tools for identifying the category which the unknown transformation belongs to. An effect 
of this kind of task is that students may understand why to study all these theorems about 
invariant elements of transformations. The invariance properties become remarkable 
phenomena instead of being the routine. 

IL2 - Tasks for Producing or Reproducing Visual Phenomena 
; 

The construction tasks in Cabri-geometry differ from construction tasks in paper and 
pencil environment in that 

• the constructed diagram must keep all the expected geometrical properties in the 
drag mode 

• to obtain drag mode proof properties, the construction must be done using the 
primitives of Cabri, given in form of geometrical terms : "parallel line", 
"perpendicular bisector", "reflection" ... 

Producing a diagram requires thus in Cabri-geometry explicit knowledge of geometry . 
Cabri-geometry offers construction tools that are not existing in paper and pencil 

environment like vectors or transformations. Construction tasks may receive new efficient 
solving strategies. 

Example with the tool vector: 

Construct a triangle ABC from the given points A, B and M centroid of triangle ABC. 

Point C is theoretically determined by the relation : 

vector MA + vector MB + vector MC = vector O. (1) 

In paper and pencil environment, it is impossible to make direct use of this relation. 
The sum MS of vectors MA and MB must be constructed through the parallelogram 
construction and point C is then constructed so that M is midpoint of CS. This strategy is 
not simpler than a purely geometric strategy consisting in considering M as a point at two 
thirds of a median. Thus the vector relation is not efficient for the task in paper and pencil 
environment. 

In Cabri, C can be constructed only by two operations as the symmetrical point with 
respect to M of the endpoint of the vector sum of the two vectors MA and MB (see Figure 
12). 
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~M 

Figure12. 

This solution requires to change relation (1) into 
vector MC = -(vector MA + vector ME) (2) 

+ 

and to identify a point symmetry in relation vector MC = -vector MS. 
Cabri contributes thus to linking the algebraic aspects of vectors to the geometrical 

aspects. Relation (1) is restricted in paper and pencil environment to algebraic calculations, 
whilst in Cabri, it also receives a geometrical meaning since it is a tool of construction. It 
offers a new connection in the conceptual field of vectors (Vergnaud, 1991) or in1he web 
of vectors (Noss & Hoyles, 1996). 

In the same way, a geometrical transformation like point symmetry can be used as a 
tool for constructing a parallelogram. When students are given the task of constructing a 
parallelogram, they all do it by using parallel lines and the parallelogram collapses when 
moving a vertex until three vertices are collinear. The construction by point symmetry 
appears as more powerful because preserving the parallelogram even when it is flat. The 
environment Cabri-geometry reveals thus the power of point symmetry under two aspects: 
the operational aspect as a construction tool and the generality of this tool allowing a 
construction resisting to a limit case. 

The property of symmetry of the parallelogram in a paper and pencil environment is 
mainly used for proving, dynamic geometry software allows the students to experience this 
property in action before using it at a more formal level (Laborde, 1995). 

In paper and pencil environment, vectors and transformations are only used in 
reasoning and proofs on theoretical objects. It has been often observed that it is quite 
difficult for students to have recourse to them in their proofs. They prefer to use Euc1idean 
arguments. We assume that Cabri allows tasks in which theoretical objects like vectors or 
transformations receive a kind of reification by being tools of construction. 

Tasks for Reproducing Visual Phenomena 

In this kind of tasks, the students are given a diagram on the screen of the computer 
and they have to reproduce it. These tasks are an extension of the first kind of tasks. They 
combine interpretation and construction. 

Example 
A triangle ABC and a point U depending on the triangle are given (Figure 13). Another 

triangle A'B'C' is given on the screen of the computer and the task of the students is to 
reconstruct point U' depending on A'B'C' as U depends on ABC. The students must 
identify the geometrical relationships between U and ABC in order to be able to construct 
U'. It can be done by dragging A, B or C and observing the behaviour of U (Fig. 14 ). As 
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students assume that it must be a remarkable point (effect of didactical contract), they can 
observe the limit cases and infer from them whether V is the orthocenter of ABC, the 
center of its circumscribed circle or its centroid. If V is the orthocenter, it must be 
coinciding with a vertex of ABC when the corresponding angle is right If V is the center 
of the circumscribed circle, it must coincide with the midpoint of a side when ABC is a 
right angled triangle. Checking can be done by drawing lines AV, BV and CV and 
identifying their properties. Mathematical reasoning based on mathematical knowledge of 
the definition of the points is involved in this recognition task: "If it is this point, it should 
behave this way". 

The construction of U' requires the use of the identified properties determining point 
U. 

C' 

Figure13. 

A 

A 

B 
B 

c 
c c 

B 

Figure 14. 

The Possibility of Inverse Problems 

All these tasks, interpretation, (re-)production, differ from usual tasks in which an 
object is defined and the definition is to be used for finding the properties of the object. 
Here the problem is inverse, an unknown mathematical object is given under the form of a 
dynamic "intelligent" diagram and one has to find its definition by experimenting 
mathematically on it. 

Theoretical knowledge is a means of modelling the behaviour of spatial graphical 
objects, like in the LEGO experiment described in Isoda & al. (200 I) in which students 
have to explain why a mechanism made in LEGO provided a rotation of 60°. This kind of 
activities requires the use of reasoning mathematically and thus is fostering learning since 
LEGO mechanisms or Cabri-geometry offers feedback invalidating wrong assumptions. 

11.3 - Prediction tasks 

Prediction activities are also interesting for the learning of geometry thanks to feedback 
provided by Cabri: the student may become aware of the inadequacy of hislher 
expectations when confronting hislher prediction with the observed result on the 
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computer. Ex : what will happen to the image of a polygon through a translation if you 
move the vector of translation ? or how to modify the vector of translation so that a circle 
and its image become tangent ? We must stress that the facility of relaxing or modifying 
conditions (in Cabri "redefine an object") is a very good means' of asking students to make 
predictions: "what will happen if this condition is no longer satisfied ?" or "what will 
happen if this condition changes into that one?" 

11. 4 - Tasks for Explaining Visual Phenomena 

Dynamic geometry software may be used for creating intriguing visual phenomena 
which are not expected by students. The only way of explaining those phenomena is the 
recourse to theory. 

For example, students are asked to observe the behaviour of the sum of vectors MA 
and MB when M is dragged. They usually do not see anything remarkable. It they are 
asked to activate the trace of the sum when M is dragged, they immediately see that it is 
passing through a fixed point (Figure 15). This is not without surprising the students who 
do not expect this phenomenon even if they know that the sum of two vectors is the 
diagonal of the parallelogram constructed on the two vectors. It creates the opportunity for 
the teacher to ask why this intriguing phenomenon. 

Figure 15. 

In a computer environment, the need for proof cannot any longer be favoured by the 
uncertainty of the result. It may arise for intellectual motives because the student wants to 
know why a phenomenon takes place. As pointed out by the Piagetian perspective, a means 
of provoking this intellectual curiosity may be caused by conflict between what the learner 
believes or predicts and what actually happens. In terms of tasks, this may be done by 
asking the students to predict properties of the diagram before allowing them to check on 
the computer, as in the following example (Abd El All, 1996). 

Students were given a rectangle ABCD and the quadrilateral IJKL of the midpoints of 
the sides· of ABCD in a paper and pencil environment. They had to determine the nature of 
IJKL and to justify their answer. All students found that it is a rhombus. Then they had to 
predict whether IJKL would remain a rhombus in any movement of B which does not 
preserve ABCD as a rectangle. All students predicted that IJKL would not be any longer a 
rhombus. In the third step they were given in Cabri (Figure 16) a quadrilateral ABCD 
having two diagonals equal (B is moving on a circle with center D and radius AC, A, C 
and D being fixed). 
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L 

Figure16. 

Almost all students recognized that UKL is a rhombus and were very surprised by this 
fact; they expressed their desire to know why. This did not lead to a successful proof for all 
students because it turned out that some of them were unable to mobilize the property of 
the midpoints line in a triangle. As in a paper and pencil environment, the interventions of 
the teacher if they come at a right time may play a critical role not only in the, solving 
process of the specific problem but also on the students themselves: after the students have 
clearly defined a question (here for example, how to prove that the sides ofIJKL are equal) 
and have been confronted to several unsuccessful trials to solve it: In such conditions, even 
though the property of the midpoints line is brought by the teacher, this property may 
receive the meaning for the students to be a means of proving that a segment length is half 
of another one because it answers a question they could determine on their own and 
express. 

Problems of inexistence of objects seem to foster the move from spatial-graphical level 
to the theoretical level. In absence of existence of any instance of an object, only the 
recourse to theory may justify the inexistence. However the observations of students in 
such a problem showed that the recourse to theory may not take place. 

The question of existence of a triangle in which two perpendicular bisectors are 
perpendicular which was asked to 12-13 year old students in both environments (paper and 
pencil and Cabri-geometre) seemed for example to raise more justifications in a Cabri 
environment than in a paper and pencil environment in which students only tried to solve 
by checking on diagrams. In a paper and pencil environment, they did not try to have 
recourse to a proof because they were uncertain of the inexistence whereas in Cabri they 
were visually convinced of the inexistence of such a triangle and try to find reasons to this 
surprising visual phenomenon (Abrougui, 1995). Finally the intriguing phenomenon led 
also in this situation to a need of proof. As stressed by De Villiers (1990, p. 18), "proof is 
not necessarily a prerequisite for conviction, conviction is far more frequently a 
prerequisite for proof'. 

For students, conviction certainly comes to a great part from the observation of spatial­
graphical properties. This brings us back to the importance of the ability of recognizing 
these properties... We would like to conclude that learning geometry should be achieved 
by learning in interaction to deal with diagrams, to make experiments on them. The new 
generation of computer dynamic diagrams renews dramatically the situation. 
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III - The Process of Integration: Two Case Studies 

IlL I - Design of Teaching Scenarios Based on Cabri by Teachers 

Our experience of designing teaching learning scenarios with teachers based on Cabri­
geometry and integrating them in the regular course of the teaching shows that it takes a 
long time before reaching the adequate tasks that take advantage of the technology 
environment and find the good time management in the classroom. 
Over several years, our team of teachers designed successive versions of the same 
scenarios. The evolution of their features can be summarized as follows. 

The first versions called often for immediate visual observations and generalization by 
inductive reasoning. One of the teacher who was a novice teacher used mainly technology 
as a provider of data and the solving of the tasks did not require the use of Cabri. These 
tasks gave a great role to measuring and did not use the animation facility of numbers, or 
even the continuous dragging possibility. 

In the first versions by experienced teachers, Cabri was supposed to facilitate the 
mathematical task that was considered as unchanged: Cabri was used as a visual amplifier 
(Pea, 1985). For instance, in tasks of identifying properties, it was assumed that it was 
easier to observe that three lines always intersect in one point during the deformation of the 
diagram by the drag mode than in a static paper and pencil diagram. The need for proof 
was less important than in a paper and pencil environment. 

A teacher designed a task about the composition of point symmetries and he wrote 
about it: 

It is just about grasping at an intuitive level a possible generalisation of results just observed in 
particular cases. It is necessary to remain modest at the level of Seconde (Grade 10) and to take into 
account the real possibilities of students. The computer environment turns out to be useful here as a 
means of exploration and help to conjecture: If the number of the polygon is even, it is the image of 
MNPQ through a translation. If it is odd, it is the image through a point symmetry. 

He wrote about a task of conjecturing properties of dilations: 

The animation of the screen (which results from the use of the tool "Dilation" in conjunction with 
dragging) implies that the students acquire without too much investment a global visualisation of a 
dilation: the effect of Dilation on usual figures and their main properties which are conjectured after 
multiple trials that they can be achieved in a short period of time. [ ... ] In paper and pencil 
environment, the properties are immediately required to construct the image of a figure. 

The role of the software was to save time, to avoid complex constructions requiring the 
use of properties that are exactly the properties to be discovered, and to favour 
visualisation. The declared intention of the teacher was to keep the demands of the task at a 
modest level. The role of Cabri was mainly to facilitate conjecturing and not to cause a 
problem, as in construction tasks, where the solving strategies have to be constructed with 
the Cabri tools. 

Only the later versions introduced two new kinds of tasks: 
• tasks in which the environment allows efficient strategies which are not possible to 

perform in a paper and pencil environment, such as construction tasks in which tools 
offered by Cabri were used for constructions; 

• tasks raised by the computer context, i.e. tasks which can be carried out only in the 
computer environment, such as reproducing visual phenomena or prediction tasks. 

One of the teachers who introduced the task of constructing a triangle from its centroid 
and two vertices did it because he was aware of the change of strategy and of the efficiency 
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of vectors and transformations as tools of construction. He commented on it in one of the 
research meetings, stressing that it was a completely new kind of task belonging to a new 
culture in which theoretically complex objects become construction tools. He supported the 
idea that this culture needs time to be developed and must be introduced early in the school 
year. It was clear from his comments, that this teacher was aware of the conceptual change 
involved in this kind of task.. It is interesting to note the evolution of this teacher, who at 
the beginning was mainly using Cabri as provider of dynamic imagery for facilitating 
formulations on the theoretical objects evoked by the diagrams. In this case, the theoretical 
objects are tools operating on the diagrams. 

The inverse problems of studying a transformation not from its definition but from the 
behaviour of a point and of its image on the screen was introduced very late by the teachers 
and mainly under influence of researchers. 

III.2 - Epistemological Beliefs 

The design of tasks is based on implicit assumptions about the way students learn 
mathematics and about the mathematical content itself. The reactions of the teachers when 
integrating technology could be used as a window on their own epistemology (Noss & 
Hoyles, 1996, ch. 8). 

From these reactions some hypotheses could be made about their beli'efs about 
mathematics and their conceptions of learning. Three types of reactions will be commented 
below in terms of possible beliefs: 

• dichotomy between conjecture and explanation or proof 
• repetition of the same tasks in Cabri and in paper and pencil environment 
• complexification of tasks 

Dichotomy Between Conjecture and Explanation or Proof 

The most obvious contribution of Cabri is the possibility of dynamic visualisation of 
geometrical relations preserved by the drag mode. Teachers (even the novice in using 
technology) immediately exploited this possibility by asking students to conjecture 
properties from what they could see. However, when the students were asked to justify, the 
teachers did not mention the possibility of using Cabri to find a reason or to elaborate a 
proof. It is as if there was no interaction between visualisation and proving. Technology 
was used in these tasks, as facilitating the formulation of conjectures but its role did not go 
beyond that. Quoting the formulation of HOlzI (2001, p. 65), we would say that the drag 
mode was "used only in a verifying manner" and that "learners are just supposed to vary 
geometric configurations and confirm empirically more or less explicitly stated facts". A 
heuristic context was not really created in which the dynamic geometry environment 
supported a solving process of proving based on experimentation in the environment 
(trials of particular cases with the drag mode, change of conditions on the givens by using 
redefinition). 

It was as if the process of elaborating a proof should deal with theoretical objects 
unrelated to their representations, not modified by actions on these representations. Bosch 
and Chevallard (1998) argue that mathematicians have always considered their work as 
dealing with non-ostensive objects and that the treatment of ostensive objects (expressions, 
diagrams, formulas, graphical representations) plays just an auxiliary role for them. This 
conception, according to which mathematical concepts exist independently of their 
representations, and which does not take into account interactions and mutual controls 
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between non-ostensive and ostensive objects, seems to underpin this dichotomy. 
It is not without relation to another conception: the intrinsic link of geometry with 

paper and pencil that is presented below. 

Repetition of the Same Tasks in Cabri and in Paper and Pencil Environment 

One of the teachers who was novice in using technology did not rely on technology 
based activities for learning geometry and, in addition to technology based activities, 
proposed similar paper and pencil tasks seemingly unaware that a paper and pencil task 
may be less demanding in terms of knowledge, by allowing perceptive strategies instead of 
strategies based on theoretical properties. It seems that she had an epistemological view of 
geometry as intrinsically linked to paper and pencil. This belief of the canonical form of 
mathematics linked to paper and pencil environment is widely shared. Povey and Ransom 
(2000) report about an inquiry carried out among undergraduate students in mathematics in 
UK. Each of them seemed to refer to a single specific mode of understanding mathematics, -
the paper and pencil mode (pp.52-3). "Technology can help if you have a paper and pencil 
understanding" told one of the students and this formulation could be taken as 
summarizing the philosophy of the scenarios written by this teacher. As expressed by 
Povey and Ransom, the underlying learning assumption is that "doing maths by hand 
indicates that one understands it". This is exactly the type of claim made by the'teacher 
when she explained to us that, without the material action of drawing the image of a 
straight line through dilation with a straight edge, students would not appropriate this 
invariant of dilation. 

This point of view is often linked with the conception of a paper and pencil 
environment as 'not a context'. Knowing how to carry out a construction in paper and 
pencil environment would be the warrant of de-contextualised knowledge. Noss and 
Hoyles (1996,. p. 48) propose an alternative view of abstraction as not necessarily linked to 
de-contextualisation and "as a process of connection rather than ascension". They add that 
the "situated, the activity based, the experiential can contain within it the seeds for 
something more general" (ibid, p. 49). In the interaction with the computer, learners may 
construct what Noss and Hoyles call situated abstractions. Situated abstractions are 
invariants that are shaped by the specific situation in which they are forged by the learner. 
Although those invariants are situated, they simultaneously contain the seed of the general 
that could be valid in other contexts: 

"Within a computational environment, some at least of these objects and relationships 
become real for the learner (we are using 'real' here to mean something other than simply 
onto logically existent-perhaps meaningful or broadly connected are better descriptions): 
learners web their own knowledge and understandings by action within the microworld, 
and simultaneously articulate fragments of that knowledge encapsulated in computational 
objects and relationships-abstracting within, not away from, the situation. In computational 
environments, there can be an explicit appreciation of the form of generalized relations 
within them (the relational invariants) while the functionality and semantics of these 
invariants-their meanings- is preserved and extended by the learner" (p. 125). 

Such linkage between understanding and paper and pencil may also be explained by 
the institutional context. Even if all kinds of calculators are allowed in our French national 
examination, all examination tasks are given in a paper and pencil environment. The 
teacher thus prioritises this context to be sure that students are able to perform the tasks in 
the examination environment. 
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Complexification o/Tasks 

Experienced teachers involved in teacher education, such as the teachers we worked 
with, very often have a constructivist view of learning based on two assumptions: 

• Students learn when they are faced with tasks for which mathematics notions are 
efficient tools of solutions; 

• Feedback coming from the situation may favour an evolution of solving strategies 
more than a judgement coming from the teacher. 

Feedback coming from dynamic geometry software may from this point of view be 
very rich in that it allows an interaction between the visual and the theoretical aspects of 
geometry. If a constructed diagram in the drag mode does not keep the shape that was 
expected, it means that the construction process must be wrong. The drag mode can also 
invalidate a conjectured property and thus lead the students to abandon it. 

The teacher may rely too much on feedback from the calculator/computer and propose 
tasks of a greater complexity than corresponding paper and pencil tasks. The teacher 
underestimates the complexity of the task, and the time needed for the student to solve the 
task because he has little reference in his experience. He overestimates the possibility of 
interpretations by the student of feedback given by the software. 

We observed this in the first version of a scenario on vectors in which students were 
asked to construct all diagrams for the tasks in Cabri. Instead of teaching vectors for two 
weeks, it took two months! It is also a common phenomenon that any kind of teaching 
innovation provokes time inflation. Schneider (1999) rep6rted on teaching about 
logarithms and exponentials based on the use of the TI 92 which took 40 hours of teaching 
instead of the usual nine hours. 

Returning to the project, after the first year, the teachers attempted to find an optimal 
balance 

• between what is prepared and demonstrated by the teacher on the LCD display and 
what is done by students, 

• between what is ready made and given on the calculators to students and what has 
to be done by the students with the software. 

For example, after one year the teachers preferred to give the macro-construction of the 
multiplication of a vector by a number for students to explore and interpret rather than for 
the students to construct themselves. Even apparently minor aspects may slow down the 
construction of a diagram. In the scenario "Vectors", the first task was about polygons that 
students had to draw. To this end, they had to designate the successive vertices of the 
polygon and, at the end of the sequence, again the first vertex. Actually it turned out that 
students tried to do polygons with a large number of sides, and sometimes had difficulties 
in designating at the end exactly the first vertex and not a close point. If they had used a 
double click on the last vertex of the polygon, it would have avoided difficulties. But the 
teacher did not anticipate the long time spent on drawing the polygons and mentioned this 
shortcut only orally during the activity. This meant that only some students paid attention 
to his remark. 

Evaluating the complexity of a task with technology requires taking into account not 
only the conceptual difficulties but also the use of the technology by the students. This is 
not easy and the wrong a priori evaluation by the teacher of the complexity of the task 
came from an absence of reference about students' behaviour in the tasks. The 
complexification of tasks may also come from the uncertainty of the teacher about what 
students would learn from the tasks. They tended to presuppose that technology would 
facilitate the solving process, so that in order to be sure that students learned something 
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from the new kind of tasks, the teachers increased the level of complexity. In all cases,. it is 
clear that a deep and precise knowledge of students' behaviour and strategies in the Cabri 
environment is essential for evaluating a priori the degree of difficulty of a task. 

IlL3 The Design of Tasks by Prospective Teachers1 

In order to evaluate the effect of teacher education to the use of Cabri-geometry in the 
teaching, we asked prospective teachers to design tasks allowing students of grade 8 or 9 to 
overcome difficulties in proof2 tasks. 

The prospective teachers were in their last year of professional education. They were in 
charge of a class (4 to 6 hours teaching per week) and followed two days of professional 
development sessions per week at the university institute for teacher education. They 
receive education in pedagogy of mathematics and "didactique" as well as help for 
practical problems in teaching. They also have to carry out a small research project about a 
teaching problem they define themselves. 

They followed general sessions about the use of Cabri during six hours introducing 
them to the features of Cabri and helping them to solve mathematics problems with Cabri. 
These sessions were purely devoted to the learning of how to use Cabri. After these 
sessions, four prospective teachers were given fictive proofs to problems supposed to be 
written by students of grade 8-9. They were asked 

to analyse the errors occurring in the solutions 
and to design tasks based on Cabri and meant for helping students overcome the 
difficulties they encounter when writing proofs. 
Then these four students attended sessions (altogether 12 hours) on the way to 

integrate Cabri into the mathematics teaching in which they had to reflect on the changes 
brought by Cabri on the notion of figure as well as on new tasks made possIble by Cabri. 

Two months after the sessions, they were given the same type of tasks as in the first 
experiment with the only change that after they proposed some tasks, they were requested 
by the experimenter to design tasks 

using the ambiguity, or the replay of the Cabri construction 
and tasks of reproduction of a dynamic Cabri-diagram. 

Examples of tasks and of their fictive solutions given to the prospective teachers 

Task 1: 
The midsegment theorem says: "In a triangle, if a line is passing by the midpoint of a side and is parallel to 
the third side, then it cuts the second side in its midpoint." 
Its reciprocal says: "In a triangle, if a line is passing by the midpoints of two sides, then it is parallel to the 
third one." 
Explain all differences that you see between the two statements. 

Solution 1 
For both statements, there is a triangle and there is a straight line which cuts the two sides in their midpoint. 
For the first statement, this line cuts the second side in its midpoint and for the second statement, this line is 
parallel to the third side. 

Solution 2 

1 This work is a master thesis (called in French DEA) of Seden Tapan supervised by H. Chaachoua and 
myself that will be defended in June 2002 (Tapan 2002) 
2 Proof is introduced in the curriculum in France at the beginning of secondary school (grade 6) and becomes 
an usual task at grade 8. 
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A 

These both statements say almost the same thing but they only turn the sentence the other way. Because in 
the two statements, there is a triangle ABC and there is a line (DE) that is passing through the midpoints of 
segments AB and AC and which is parallel to line (BC). 
Hence I can say that if the one is true then the other one is also true. 

Solution 2 does not distinguish statements in function of their status in a proof, hypothesis 
or conclusion of a step and considers only the content of each statement. Solution 1 
distinguishes statements trough their position in the statement (in the first part or in the 
second part after "then") but no more than that. As solution 2, solution 1 does not express 
the status of each part of a deductive step. 

Task 2: 

c 

In the above diagram, BD = DC and (AD) .l.. (BC.) 
Prove that ABC is an isoceles triangle. 

Solution 1 
In an isosceles triangle, the height is also the perpendicular bisector. As line (AD) is height and perpendicular 
bisector, ABC is isosceles. 
Solution 2 
As ABC is an isosceles triangle, line (AD) is height and perpendicular bisector. Thus ABC is isosceles since 
its height is also perpendicular bisector. 

Solution 1 seems to express the status of a statement in a deductive step but mentions 
the reciprocal theorem instead of the adequate one. Solution 2 may be interpreted in that 
the student is unable to recognize the status of a statement and to distinguish between 
hypothesis and conclusion, he/she just formulates statements by using external signs of 
deduction. 

To students who do not consider the status of statements but only their content, Cabri 
offers several ways of externalising this difference: 
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• Students who do not see the difference between hypotheses and conclusions may 
infer that properties are true just because they seem true on the diagram (confusion 
between spatial and theoretical relations, cf. §I). The drag mode allows to eliminate 
properties purely taken from the diagram that seem to be true on the particular case 
of the diagram 

• The drag mode can also be used to show by relaxing a property P that as soon as P 
is satisfied, property Q is also satisfied. When dragging the point on the first side, 
as soon as it is the midpoint, the line parallel to the third side cuts the second side 
in its midpoint (task 1). The tool Redefmition can also be used in this way. 
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• In the construction process are used only the given of the problem whilst the 
conclusions appear as staying true in the drag mode although not used for the 
construction of the diagram. 

• The tool ambiguity shows that two geometrical objects have the same spatial 
position. This is exactly what a theorem expresses. In task 1, in the statement "In a 
triangle, if a line is passing by the midpoint of a side and is parallel to the third side, then it cuts the 
second side in its midpoint", the intersecting point of the side and the parallel line 
(hypotheses) is also the midpoint of the second side (conclusion). It results that in 
some cases, ambiguity reveals the difference between the given used in a 
construction and the conclusion. 

• The replay of a ready made construction allows the user to see the objects used in 
the construction, in particular the objects that have been hidden by the designer of 
the construction. It also may be a means of externalising the difference between 
hypotheses and conclusions. 

• Finally when trying to reproduce Cabri diagrams, the student must be able to 
identify those which characterize the construction and then imply the other 
properties he could observe. 

From the observations the two pairs of prospective teachers designing tasks, it appears 
that before the specific teaching on the pedagogical use of Cabri, they were only able to 
use the construction process and the drag mode to show the difference between properties 
just been taken as granted from the diagram and proved properties. Only one pair could 
also use construction to show the difference between hypotheses and conclusion. After this 
teaching, both pairs could use construction and drag mode to make visible the difference 
between hypothesis and conclusion. They could use ambiguity only when requested to do 
this and about a specific task which was formulated to favour this use (The task consisted 
of proving that two points were coinciding). The drag mode was not used by them to make 
students aware of the sufficiency of a property with respect to another one. It was difficult 
for these teachers to use successfully the replay of a construction and situations of 
reproduction of a Cabri-diagram. This shows clearly the gap between the use of a tool for 
solving tasks and the use for designing tasks. The possible uses of Cabri described above 
for overcoming difficulties in proving were not taught in an explicit manner and had to be 
constructed by the teachers. 

IV. Conclusion 

In our introduction we claimed that the process of integrating technology into 
mathematics teaching is a long and complex process. In analysing the types of tasks 
developed by teachers over the three years of the project and their evolution, we can 
formulate tentative explanations for the length of this process. 

As the didactic system as a complex system, technology is not just an additional 
element in the system since it interacts with all the components of the system, which are 
subject to change. This point of view is based on two theoretical approaches, the notion of 
instrument as developed by Rabardel and Verillon and the mediating function of a 
computational learning environment (Noss & Hoyles, 1996). Verillon and Rabardel (1995) 
stressed how an artefact is not taken as such by the learner but reconstructed by himlher. 
The learner constructs both a representation of the artefact (the instrument) and the 
structures that allow himlher to perform activities with the artefact (schemes of utilisation 
of the artefact). Both types of constructs depend on prevIous knowledge of the learner and 
affect this knowledge. According to.a Vygotskian perspective, Rabardel claims that the 

31 



Laborde 

"instruments" constructed by the learner constitute forms which structure the relationships 
with situations and knowledge and thus may have a considerable influence on the 
construction of knowledge. Noss and Hoyles (1996) investigated many years how learners 
construct situated abstractions dependent on the means of action and expression offered by 
the environment. Students construct an instrument in function of the tasks they have to 
solve, i.e. mathematical tasks. We assume that the tasks of the teachers differ from those of 
students. The teachers must be able to use Cabri for creating tasks to be solved by students. 
They must be able not only to consider the Cabri tools as tools for solving problems but 
also to consider them as mediating mathematical knowledge: construction combined with 
drag mode may mediate the status of a statement with respect to deduction; the locus or 
trace may mediate the notion of a geometrical object as a set of points. 

We interpret the behaviour of novice teachers in the design of scenarios as resulting 
from their perspective that technology is an additional component of the teaching system 
but external to the learning processes. Technology was facilitating material aspects of the 
actions of the students (teacher novice in teaching), technology was used in observation 
and construction tasks but activities in paper and pencil environment were given in 
addition by the teacher who was a novice in the use of technology. It is interesting to note 
that this latter teacher planned what might be interpreted as a more verifying or test way of 
using the drag mode than search way (in Holzl's terms). In the observation tasks that she 
gave, all steps of the conjectures were given explicitly. 

A second interesting feature of the design process of the scenarios by the experienced 
teachers can also be interpreted in terms of instrumentation and mediating function of the 
environment. These teachers offered more open exploration activities involving more a 
search use of the drag mode; they did it in two kinds of circumstances: at the beginning of 
sessions in observation tasks to introduce new properties and at the end of sessions in open 
problems to be solved. But the comments they added, expressed clearly that the drag mode 
was for them more facilitating visualisation than acting in the solving process, even for the 
open-ended problem. It took one or two years for them to accept that investigating the 
invariants of an unknown transformation under the form of a black box situation through 
the drag mode and the tool "Redefinition" could be part of a scenario. The difference 
between a reproduction of a Cabri diagram and an observation situation for conjecturing 
must be stressed here. A situation of reproducing a Cabri diagram is a problem situation 
and the invariants are the tools of solution of this problem. In an observation situation, in 
which students are asked to conjecture properties, the question is more to satisfy a contract 
of finding properties relevant from the perspective of the teacher. 

We assume that really integrating technology into teaching takes time for teachers 
because it takes time for them to accept that learning might occur in computer-based 
situations without reference to paper and pencil environment and to be able to create 
appropriate learning situations. But it also takes time for them to accept that they might 
lose part of their control over what students do. Povey and Ransom (op.cit.) concluded 
from their inquiry among undergraduate students (already cited above) that the plea for 
learning by doing 'by hand' could be related to a "desire to feel in control"(p.56). As they 
mentioned, speaking about technology as "taking over" and depriving the human of control 
is usual in a wider social context. The situation is far more complex for a teacher who must 
not only understand what the computer does but also what the students do with the 
computer. 

Cabri covers a broad domain of knowledge and action. It is a microworld allowing 
multiple ways of exploring, experimenting and solving a problem. If the basic use of Cabri 
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can be learned rapidly because of its friendly interface, constructing a global and structured 
representation of all of its possibilities requires time. It requires even more time to analyse 
the possible uses of Cabri in terms of mediation of knowledge, and to construct 
correspondings tasks. 

In the same way as teachers do not have to reconstruct all exercises and problems that 
they give to students, it is not expected that teachers should on their own find the adequate 
situations to use technology. Research and investigation should be carried out in order to 
have a better knowledge of students learning with technology. The results and data of these 
investigations could then be transferred to teacher education. This is why we consider that 
research on the integration of technology into maths teaching is important. 
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