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This paper identifies the strategies Singaporean and Australian students (n = 1,187)
employed to solve a 24-item mathematics test. A mathematics-processing framework is
proposed, which describes the way primary-aged students successfully process graphic and
non-graphic mathematics tasks. There were distinct differences in the way in which the
students from the respective countries approached the tasks with the Singaporean students
more likely to employ strategies that were explicitly taught and practiced in the classroom,
whereas the Australian students tended to employ a more diverse range of approaches.

Singaporean students usually outperform Australian students on international
comparisons of numeracy competence (e.g., TIMMS). Cross-country differences in
classroom practices and lesson development have also been noted (e.g., Logan & Ho, this
symposium), including the tendency for Singaporean teachers to provide more explicit
instruction of problem-solving methods or heuristics (Ho & Lowrie, 2012). Much less is
known about how students from different countries represent, decode and encode
mathematics ideas. The focus of this paper is to propose a processing framework that can
be used to monitor how primary-aged students represent, decode and decode mathematics
tasks. It is argued that the framework is particularly useful when conducting cross-country
and cross-cultural studies—especially across countries with distinct pedagogical practices.

Representing and Processing Mathematics Tasks

Krutetskii (1976) classified student’s problem-solving solutions into three categories:
verbalizers who preferred to process information using verbal-logical reasoning;
visualizers who tended to prefer to use visual imagery; and mixers, who did not have a
preference for either approach. His seminal work encouraged others to describe the
division between verbal and imagery representations along a novelty-of-task dimension
(e.g., Hegarty & Kozhevnikov, 1999). Kaufmann (2000) argued that great precision is
achieved in a verbal-propositional description of a task. Such representations are efficiently
described, even though they demand a full range of computational operations, with such
processing best utilised when tasks are not complex. By contrast, tasks demanding
extensive use of imagery are likely to be more ambiguous—however imagery is
particularly useful where the need for processing is high, which is generally the case with
novel task conditions (Lowrie & Kay, 2001).

Recent studies have found a student’s use of analytic or visual-imagistic processing is
independent of spatial ability (Stieff, Ryu, Dixon, & Hegarty, 2012) and most likely
associated with the understanding and proficiency they bring to the task rather than a
particular preference or style (Lowrie & Kay, 2001). Blazhenkova and Kozhevnikov
(2009) argued that the fixation onc ognitive style research was problematic since
“neuropsychological data had revealed the existence of two distinct imagery systems that
encode and process visual imagery in different ways” (p. 640). From a mathematics
education perspective, object imagery is associated with the way objects are processed in
terms of shape, colour and texture or what Bertin (1983) describes as saturation. The
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spatial imagery system processes object location, transformation and other spatial
relationships. These two processing systems tend to work independently of one another. It
also seems to be the case that the manner in which students process information and the
strategies and approaches they use to solve the tasks are dependent on their conceptual
understanding but also the manner in which the respective tasks are represented. Moreover,
representation may be influenced and even dominated by embedded elements of the task.

To date, most studies have considered students’ representation and information
processing when solving traditional word-based problems. As Blazhenkova and
Kozhevnikov (2009) argued, the validity of verbal-visual spectrums have been questioned
because they are essentially descriptive and “do not attempt to relate cognitive styles to
contemporary cognitive science theories” (p. 640), since they fail to consider tasks in
visual or spatial domains (Kounios & Beeman, 2008). Problem solving, particularly in the
first eight years of schooling, involves much less word-based problem solving than was the
case even ten years ago (Lowrie & Diezmann, 2009). Consequently, the assessment of
students’ mathematics understanding and proficiency needs to be considered in relation to
both the representation of the mathematics task and the manner in which the problem
solver represents his/her respective solution or approach.

Contextualising the Study

The processing framework is established within a cross-cultural study of 1,187
(Singaporean and Australian) Year 6 students—with more than 23,000 problem-solving
approaches to 24 tasks analysed (24 items x at least 2 approaches x N). The tasks were
both graphic and non-graphic in composition (12 of each). The graphic tasks included
items containing diagrams, maps, number lines, line graphs and pie charts. The non-
graphic tasks were composed of text only—commonly considered ‘word problems’. The
framework considers the related influences of task design, representation and strategy use
on students’ proficiency and fluency. Moreover, the processing framework provides
opportunities to describe the influence particular classroom practices have on s tudent
performance—and specifically strategy processing approaches and representational
prototypes in the current investigation.

Categorisation and Analysis of the Data

The framework describes the way students encoded and decoded information to
produce solutions to the 24 mathematics tasks. A corresponding Mathematics Processing
Instrument (MPI) supplemented the 24-item test, which encouraged the students to
describe the approach they used to solve each item. Thus, data consisted of student scores
on the test (correct and incorrect responses for each item) and the approach they used to
solve the respective items. The approaches were classified as either visual (including
approaches where the students employed predominately visual, concrete-pictorial or
gestural approaches) or nonvisual (where the approach predominately contained
algorithms, number sentences or pre-algebraic reasoning). Several multivariate procedures
were used to analyse these data to complement the rich qualitative analysis described
elsewhere in the symposium (see Greenlees; Ho & Logan; Logan & Ho, this symposium).

The Development of a Mathematics Processing Framework

In terms of the non-graphic tasks, the participants frequently decoded information
using one or more heuristics (e.g., constructing number sentences, using symbols, drawing
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diagrams as models). Generally, the Singaporean students’ decoding techniques were
efficient and followed template-like, worked sample, designs. For the most part, the
Singaporean students’ solutions were indistinguishable in terms of representation—
indicating the influence direct teaching instruction had on the way the students decoded the
tasks. This was also the case when students produced incorrect solutions, that is, the
representational structure was similar to that of students who produced correct solutions—
the difference(s) were commonly associated with calculation errors. By contrast, the
Australian students’ approaches to non-graphic tasks were more idiosyncratic, detailed and
contained more non-essential information. Correct solutions included a number of
variations on a common approach or method. It was evident the students were not utilising
specific representations of an heuristic in these successful approaches. Unlike the
Singaporean students, incorrect solutions tended to contain no logical sequencing of ideas.
For the most part, these students used algorithms or computational procedures
inappropriately such as selecting the wrong operation or not understanding which
information was pertinent and which information was redundant.

With respect to the graphic items, the students tended to use encoding techniques
(including visualisation and concrete imagery) to (re)present the task before utilising
decoding techniques. This finding was surprising—with students wanting to construct their
own images and representations of the tasks despite the fact visual and graphic
representations were already contained within these tasks. Even though the tasks contained
graphic stimulus that had to be decoded, the students frequently produced their own
representations as part of the solution. That is, for the graphic tasks, students frequently
used decoding skills to interpret the graphic information whilst also using encoding
techniques to produce images (either on paper or in the mind’s eye) to help organise
information and potentially scaffold understandings.

| Graphic tasks | | Non-graphic tasks |
Visual approach Non-visual Visual approach Non-visual approach
approach
v X v X v X v X

Scaffold Prototype | Decoding | Graphic Efficient Lack of High Reveals

understand | limitation | efficiency | language novel/ heuristic proficiency | limited
limitations | complex instruction fluency understand

tasks

Figure 1. Processing graphic and non-graphic mathematics tasks.

Figure 1 provides an illustration of the proposed mathematics-processing framework.
The framework divides mathematics tasks into two representational modes—graphic and
non-graphic tasks. Additionally, the framework categorises student processing into visual
and non-visual representations for each of the two representational modes. Correct (v )
and incorrect (X) responses for the two processing modes (i.e., visual and non-visual)
describe the central mathematics elements that are derived from such effective or
ineffective processing. The common approach for each category is displayed.

The Australian students tended to utilise visual strategies (successfully) more
frequently than Singaporean students to solve graphic tasks. They were more inclined to

753




‘draw on’ the graphics embedded within the graphic tasks—the Singaporean students
seldom did this. Noteworthy, the Australian students’ performance on the 12 graphic tasks
was much closer to the mean scores of the Singaporean students than was the case with the
non-graphic items. When solving the non-graphic items, the Singaporean students were
much more likely to employ successful visual strategies than the Australian students. It
was evident they possessed a greater repertoire of heuristics (including drawing diagrams)
to solve these word-based tasks. As Ho and Lowrie (2012) reported, Singaporean students
utilise effective visual approaches (e.g., the model method) to solve non-graphic tasks—
with such approaches explicitly taught in the classroom. For the non-graphic tasks, and
especially the most difficult of these tasks, a high proportion of Australian students used
ineffective non-visual strategies to solve the tasks. For the most part, the students used
algorithms or computational procedures inappropriately, for example selecting the wrong
operation or not understanding which information was pertinent and which was redundant.

Conclusion

This model provides insights into primary-aged students’ mathematical understanding
and proficiency in relation to task representation. Unlike other models that have been
proposed in the literature, this framework is intended to describe how students solve
mathematics tasks across both non-graphic and graphic representations. Moreover, the
model provides strong insights into students’ thinking and conceptual understanding
through a representational lens. The framework has potential for assessing students’
mathematics development and could be used as a dynamic assessment tool. Importantly, it
allows teachers to include task representation as another source of information to describe
students’ sense making and gain insights into students’ proficiency.
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