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Previous research has shown that when students expand brackets, errors tend to cluster around 
key positions due to increased working memory load. This study found that by neutralising 
the effects of position, the occurrence of error clusters was reduced. Furthermore, a self-rating 
mental effort instrument was employed which found a positive correlation between errors and 
mental effort. This instrument also detected subtle variations in mental effort between groups 
of varying mathematical ability. 

The cause of mathematical errors can be quite complex, as errors can be caused by 
limitations in working memory (Kintsch & Greeno, 1985) as well as by lack of knowledge. 
Considerable research has been conducted into the nature and cause of mathematical errors. 
Hitch (1978) found that the solution to a mental calculation, such as 347 + 189, was highly 
dependent upon the problem solver's ability to hold and process information. If any of the 
initial information or interim subtotals were forgotten, errors would occur. Consequently, 
Hitch argued that mental arithmetic errors were caused by decay in the storage of problem 
information. More recent research by Ashcraft, Donley, Halas and Vakali (1992), and Logie, 
Gilhooly and Wynn (1994), has confirmed the link between calculation errors and loss of 
information. Furthermore, Campbell and Chamess (1990) found that when students were 
mentally required to square large numbers (such as 74) by using a calculation algorithm, errors 
had a higher chance of occurring at "heavy traffic stages in the squaring task" (p. 887). 
Campbell and Chamess argued that these stages corresponded with the high demands of 
keeping track of subgoals and their results. In addition, Ashcraft et al. (1992) reported that the 
retrieval of basic addition facts could also be affected by working memory demands. An 
increase in problem difficulty corresponded to less accuracy in recalling number facts. This 
last finding is of some significance as it suggested that working memory load affects the 
retrieval of information as well as its storage. 

Much of the research into the relationship between working memory and errors has been 
conducted in the domain of mental arithmetic. However, evidence of this relationship has also 
been found in other areas of mathematics such as arithmetic word problems (Fayol, Abdi & 
Gombert, 1987), geometry (Ayres & Sweller, 1990; Ayres, 1993) and algebra (Ayres, In 
press). Fayol et al. employed word problems and found that the way that the problem texts 
were organised led to significant performance differences. Changing the order of the wording of 
the problems, for example, led to more errors and a reduced performance. Fayol et al. argued 
that certain text structures forced the participants to problem solve in a manner (bottom up) 
which overloaded working memory and forced errors. Similarly, Ayres and Sweller (1990) 
identified a specific error profile in two-move geometry experiments which required the 
compulsory calculation of a subgoal first before the ultimate goal could be reached. It was 
discovered that students made more errors in the calculation of the sub goal stage than on the 
goal stage. The design of these geometry experiments was such that all problems were 
counterbalanced. In other words, the application of a theorem such as the "angle sum of a 
triangle is 180 degrees" occurred an equal number of times as a subgoal and as a goal. 
Consequently, if all cognitive demands were equal, it was expected that errors connected to 
the triangle property would be equally distributed over both stages. This was not the case, as 
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more errors were reported at the subgoal stage. Consequently. it was argued that errors were 
not necessarily made because the geometry theorems were poorly learnt. but because the 
subgoal stage demanded more working memory resources and forced errors. 

Error clusters was also identified by Ayres (In press;) on bracket expansion tasks of the 
type: -3 (-4 - 5x) - 2 (-3x - 4). These tasks require the following four operations to be 
completed: -3 * -4 (Operation 1), -3 * -5x (Operation 2), -2 * -3x (Operation 3), and -2 * -4 
(Operation 4). It was discovered that more errors were made during t~e expansion of the 
second bracket compared with the first bracket. and more errors were made during the second 
operation (Operations 2 and 4) compared with the first operation (Operations 1 and 3) within 
each bracket. Nearly all errors made involved the manipulation of signs. The clustering of 
errors indicated that some students c~uld multiply -3 and -4 together correctly when they 
appeared during the first or third operation. but made errors (-12) when they appeared during 
the second or fourth operation. To explain this result. Ayres argued that more decision-making 
processes are made on the second operation within each bracket and during the expansion of 
the second bracket due to the dual-role of signs which link together brackets and operations. 
Consequently. as a result of increased decision making. working memory load was not equally 
distributed over the four operations. At points where the load was heaviest. information was 
either lost from working memory or incorrectly recalled from long-term memory and errors 
resulted. 

To investigate the working memory load explanation further. Ayres (In press) completed 
an additional experiment using a dual;..task methodology (see Ashcraft. 1995). Prior to 
completing a specific operation within a bracket problem. students were given a random 
sequence of letters to remember. which they were required to recall after completion of the 
computation. It was found that recall varied across the four operations. In particular, recall 
connected to the fourth operation was the poorest. suggesting thatthis operation caused the 
heaviest working memory load. Whereas. this result was consistent with a working memory 
load model. two anomalies were identified. Firstly. variations in recall were only found on 
operations that included an x-term. For operations that were purely numerical. no variation in 
recall was found. This was surprising. as it was found in earlier experiments that error 
clustering would occur regardless of the inclusion a pro-numeral. Secondly. the students made 
few calculation errors. This was also unexpected as students were required to simultaneously 
remember a random sequence of letters and complete a calculation. To explain these anomalies, 
Ayres suggested that because students were only required to calculate one operation per 
problem (instead of four). the overall working memory load could have been reduced. 

The findings described in the previous paragraph are interesting. because if asking students 
to complete only one operation per bracket problem reduces working memory load and error 
rates. then this strategy may have the potential to be an effective instructional technique. 
Cognitive load theorists such as Sweller argue that instructional techniques are most effective 
when cognitive load is reduced (see Sweller, 1999). Consequently. this study was designed to 
investigate further the effects of requiring students to calculate only one operation on bracket 
expansion tasks that normally require four. More specifically it attempts to examine under 
this condition: 

whether error clusters appear; 
how students rate their own mental loads per calculation; 
whether error rates and self-rating mental loads vary according to mathematical ability. 
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Method 

Participants 

Sixty two students from Grade 8 of a Sydney high school participated in this study. On 
the basis of Grade 7 mathematics results the students had been streamed into three groups on 
their entry into Grade 8. The group of highest general mathematical ability is referred to as 
Group 1 (n =23), the next group as Group 2 (n=22) and the final group as Group 3 (n=17). 
All students had prior experience of expanding brackets of the type used in this study. 

Materials and Procedure 

A set of eight problems, each containing two brackets, was designed (see Table 1) and 
recorded on a work sheet. For each problem, one specific operation was targeted as the 
designated calculation for that problem. These operations were flagged for the students' 
benefit by drawing an arrow downward from the relevant term within the bracket. Below the 
arrowhead was drawn a dotted line indicating where the student was required to complete the 
given computation. For example, the fourth operation (-3 * -7) was the targeted calculation in 
Problem-l (see Table 1) and consequently an arrow was drawn downward from the "-7" in 
the bracket. This indicated to the student that they were required to complete this calculation 
only. Overall, eight calculations were required. To detect error clusters without bias, the 
problem set consisted of a number of counterbalanced pairs. These pairs featured the 
calculations "-4*3" (operations 1 and 2 in problems 2 and 8),11-3*-7" (operations 3 and 4 in 
problems 6 and 1, "-3*-8x" (operations 1 and 2 in problems 5 and 3), and "-2*-9x" (operations 
3 and 4 in problems 4 and 7). This design ensured that a calculation including a pro-numeral 
(x) and without a pro-numeral occurred in all four operational positions. 

Table 1 
The Problem Set Used in the Study 

Problems Targeted Operation Code 

1. 5 (3x - 4) -3 (6x - 7) 4th Op.4 

2. -4 (3 + 6x) + 3 (2x -4) 1 st Op. 1 

3 -3 (2 - 8x) + 3 (8x - 7) 2nd Op.2x 

4. -4 (3x - 1) - 2 (9x - 5) 3rd Op.3x 

5. -3 (-8x + 2) + 3 (2x - 4) 1 st Op. Ix 

6. 5 (3x - 4) - 3( -7+ 6x) 3rd Op. 3 

7. -3 (2 - 8x) - 2 (-5 + 9x) 4th Op.4x 

8. -4 (6x + 3) - 2 (4x + 5) 2nd Op.2 

To measure mental load, a self-rating technique developed by Paas and van Merrienboer 
(1994) was employed. Using a 7-point Likert Scale (ranging from 1- very easy to 7- very 
difficult) students were asked to self-rate the mental effort involved in each calculation. 
Students were asked to do this immediately after the completion of each calculation. A 
designated space was provided on the work sheets for each problem. Before commencing the 
problem set, a practice example was given by the researcher. During this phase instructions 
were given and students were allowed to ask questions. Calculators were not allowed and 
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sufficient time was given for students to complete the problem set. It is worth noting that this 
technique has been used successfully over the last six years in measuring the effectiveness of 
i~structions (see Sweller, 1999). However, as far as the author is aware, it has never been 
applied in the context suggested in this study. 

Results and Discussion 

Analysis of Errors 

The number of errors made by each student was recorded according to their positional 
operation and whether they included a x-term or not (see Table 2). A total of 60 sign errors 
were made. Very few arithmetical errors were made (10%) and were not included in the 
analysis of the data as they were not the focus of this study. The mean number of sign errors 
made were 0.3 (SD = lA), 1.1 (SD = 1.3) and 1.7 (SD = 1.7) for Groups 1, 2 and 3 
respectively. A one-way ANOV A revealed significant between group differences: F (2, 59) = 
6.77, p <0.01. A post-hoc Tukey-HSD test.revealed that the highest ability group (Group 1) 
made significantly fewer errors than the lowest ability group (Group 3), as might be expected. 
Group I also made fewer errors than Group 2, and Group 2 made fewer errors than Group 3, 
although these results were not significantly different. 

To examine differences between the operations themselves, a number of paired t-tests 
were completed. No significant differences were found between Operation 1 and Operation 2 
(t = 1.00), Operation 3 and 4 (t = 1.00), and Operation 3x and Operation 4x (t = 0.33). 
However, a significant difference was found between Operatjons Ix and 2x, (t (61) = 4.8, p < 
0.01), indicating that students made more errors multiplying -3 and - 8x together when it 
appeared as the second operation rather than the first. Furthermore, the total number of errors 
made in the first bracket was not sigriificantly different to the total number of errors made in 
the second bracket: t (61) = 1.49,p= 0.14). As no differences were found between the two 
brackets and Operations 3 and 4 (with or without x's) the results are not consistent with the 
Ayres (In press) study which found large differences on these comparisons when all 
operations were completed for each question rather than just one. Nevertheless, the significant 
difference found between Operations Ix and 2x, .. suggests that Operation 2x may. have 
provoked an increase in working· memory load at this point. It is also worth noting that 
operations with x caused significantly more errors than operations without x under a paired t­
test: t(61) =4.18, p < 0,01. 

Table 2 
Frequency a/Errors made on each Operation.by Group 

Op. 1 Op.1x# Op.2 Op.2x Op.3 Op.3x Op.4 Op.4x 

-4*3 -3*-8x -4*3 -3*-8x -3*-7 -2*9x -3*-7 -2*9x 

Group 1 0 0 1 3 0 1 0 1 

Group 2 1 ° 2 7 4 5 0 6 

Group 3 ° 1 0 9 4 5 4 6 

Totals 1 1 3 19 8 11 4 13 

Note. x indicates that a pro-numeral was present in the operation. 
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Analysis of Self-rated Mental Effort 
Self-rating mental effort scores were recorded for each individual operation (see Table 3). 

ACronbach alpha run on this data gave an alpha coefficient ()f 0.90 indicating that the 
instrument had high internal consistency. Generally students did not rate these tasks as 
difficult. A maximum score of 2.2 on any operation indicated that the students rated the tasks 

. . 

as easy to fairly easy. However, a MANOVA (Hotelling's Trace) using the eight operations 
as dependent variables found a significant difference between the groups: T = 1.98, P = 0.02. 
Uni-variate tests (see Table 3) revealed that operations lx, 2, 3 and 4x had p-values of less 
than 0.01 and therefore contributed to the overall group differences. In these cases, the high 
ability group (Group 1) exhibited significantly lower scores than the other two groups. This 
was consistent over the other four operations as well, except for Operation 4 (-3*-7), where 
Group 2 rated their mental effort lower than the other groups. 

Table 3 
Self-rating Mental Effort for each Operation 

Op. 1 Op.lx Op.2 Op.2x .Op.3 Op.3x Op.4 Op.4x 

-4*3 -3*-8x -4*3 -3*-8x -3*-7 -2*9x -3*-7· -2*9x 

Group 1 1.4 1.4 1.3 1.8 1.3 1.4 1.8 1.4 

(0.82 (0.50) (0.47) (0.74) (0.88) (0.59) (1.23) (0.58) 

Group 2 1.8 2.1 2.1 2.2 2.1 2.1 1.6 2.2 

(0.81) (0.75) (1.02) . (0.81) (0.75) (0.90) (0.91) (1.10) 

Group 3 1.9 2.3 1.9 2.1 2.2 1.7 1.8 2.2 

(0.86) (1.16) (1.03) (1.03) (1.48) (0.85) (1.07) (1.03) 

Combined 1.7 1.9 1.8 2.0 1.8 1.7 1.7 1.9 

(0.81) (0.89) (0.92) (0.86) (1.10) (0.82) (1.07) (0.95) 

F values 1.75 7.13** 5.24** 1.56 4.92** 3.67* 0.46 4.94* 

Note. Standard deviations recorded in parentheses; *p < 0.05; **p< 0.01. 

To investigate the differences in· self-rating mental load within the problem-set. a number 
of matched t-tests were run on the counterbalanced pairs (see Table 4). 

Table 4 
Paired t-test Values on Paired Groupingsfor Mental Effort Measures 

Group 1 Group 2 Group 3 

t values t values t values 

OplvOp2 0.70 1.67 0.39 

Op Ix v Op 2x 2.86** 0.90 1.33 

Op 3 vOp 4 2.021\ 2.13* 1.07 

Op 3x v Op 4x 0.16 0.66 2.58* 

Bracket 1 v Bracket 2 0.41 1.06 1.05 

Numerical v Algebraic 0.56 3.58** 0.55 

Note. **p < 0.01, *p <0.05, I\p = 0.06. 
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Combined 

. t values 

1.01 

1.31 

0.60 

1.25 

0.88 

2.54** 



Although a number of significant differences were identified on these comparisons, there 
was little consistency between the, groups. For example, in the comparison between 
operations 3 and 4 (no x's), the top group rated Operation 4 (1.8) more difficult than 
Operation 3 (1.3); whereas Group 2 rated Operation 3 (2.1) more highly than Operation 4 
(1.6). The combined group data produced only one significant difference; viz, operations with 
algebraic terms were rated more difficult than purely numerical operations. Nevertheless, this 
result was consistent with the error data, which indicated that more errors were made on the 
operations that included an algebraic term. The error data also revealed that more errors were 
made during Operation 2x rather than Ix. However, only Group 1, who made few errors, 
ranked Operation 2x more difficult that Operation lx, Despite the variations between the 
groups, there was a correlation of 0.65 (p = 0.08) between the error rate and the mean mental 
effort over the eight operations. Although this result fails to reach significance at the 95% 
level, it is fairly close and may indicate a real relationship between mental effort and the 
occurrence of errors. 

General Discussion 

Examination of the error profiles revealed that errors were not generally clustered around 
key points such as Operations 2 and 4 which tends to happen when students calculate all four 
operations (see Ayres, In press). This study therefore provides some evidence to support the 
hypothesis that asking students to complete one calculation only per question, reduces the 
overall working memory load. However, the data did not totally support this argument 
because one error cluster was observed when students made more errors on Operation 2x than 
Ix. It is worth noting that" -3*-8x" includes two negatives and a x term. Studies have shown 
that many students have great difficulty understanding the basic concepts of aigebra (se~ 
Kiichemann, 1981; Herscovics & Linchevski 1995; MacGregor & Stacey, 1996) and negative 
numbers (see Gallardo, 1994; Herscovics & Linchevski, 1995). It is therefore feasible that the 
manipulation of an algebraic expression with two negative numbers is fairly complex and may 
have exerted a heavier load on working memory than the other combinations. This increased 
load may have re-acted more directly with the bracket task. to cause the error cluster. As the 
results are not conclusive, it is too early to assess the potential of a single calculation 
technique as an instructional method. Future studies might explore this idea further by directly 
comparing the single calculation method with the traditional full ,bracket expansion method. 

The use of the· self-rating mental effort instrument proved reliable. The instrument 
demonstrated a high internal consistency and was sensitive. enough to identify differences 
between groups. For example, the group with the highest mathematical ability rated the overall 
task less demanding than the other two groups, as might be expected: A positive correlation 
(0.65) was found between errors and mental effort, suggesting that, as mental effort increases, 
errors are more likely to occur. Generally, calculations that included pro-numerals were rated 
as requiring more mental effort and tended to promote more errors. As self-rating scales of 
mental effort were found to be useful in this study, they may have a greater role to play in the 
learning and teaching of mathematics. 

Finally, the use of errors in the teaching of mathematics has long been· valued by 
mathematics educators (see Borasi, 1994; Ashlock, 1986). Some researchers (Brown & 
Burton, 1978; Resnick, Nesher, Leonard, Magone, Omason, & Peled, 1989) argue that error 
analysis is an important diagnostic tool in identifying common misconceptions and wrongly 
applied strategies. This study on errors, like others, has uncovered some useful information 
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about student performance and perceptions. It is therefore argued that research into errors 
should be continued, as it provides a rich source of knowledge about the processes and 
influences involved in mathematical problem solving. 
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