Bringing Research on Students’ Understanding
into the Classroom through Formative Assessment

Kaye Stacey
University of Melbourne

<k.stacey@unimelb.edu.au>

‘Specific Mathematics Assessments that Reveal Thinking’ (abbreviated as ‘smart tests’)
provide on-line formative assessment of middle years students. They aim to put information
from research on students’ understanding directly into the hands of teachers, by providing
quick automated diagnosis of learning for all students in a class. The Reflections test is
used as an example to describe item presentation, evidence identification, and reporting to
teachers, and highlight how pedagogical content knowledge can be built.

Taking research into practice

This paper describes one attempt to put the results of research in education into the
hands of teachers. Mathematics education is indeed an interesting subject in its own right,
but the primary reason for it to be supported and researched is to help more students learn
more mathematics in a deeper, more fulfilling and more useful way. There are many ways
in which research can influence practice. Some research findings can directly influence
educational policy, at the level of systems or schools. Examples include research on the
advantages and disadvantages of streaming or setting by ability, or special provisions for
girls’ education. These can be taken into practice at the school or system level. Other
research contributes to the quality of lessons, of curriculum as experienced by students, and
of teaching and learning. This is harder to take into practice, because it affects a myriad of
small actions by all teachers every day. A major strand of this research has been to study
students’ thinking and learning related to specific topics. Beginning in the early 1900’s
with the study of learning number facts and carrying out arithmetic algorithms, in mid-
century it took the ‘cognitive turn’ to study students’ conceptual development, and we now
have accumulated a rich understanding of the ways in which students develop their
knowledge, skills and understanding of the main topics of school mathematics, and of the
features which need special attention in teaching. There are still gaps and important
continuing research — about 20% of the 2012 M ERGA conference papers demonstrated
continuing work in this area — but there is a wealth of information which could improve
learning that is locked away in books and not being used by many teachers.

Does it make ad ifference to student outcomes if teachers’ understand how their
students think about mathematics? Early research reached the conclusion that this had only
a weak effect. However, these studies generally used proxy variables, such as qualifications
and course (subject) attendance. In contrast, strong effects have been found in recent
studies which have measured the content knowledge of mathematics which is directly
involved in teaching and the associated pedagogical content knowledge. For example,
Baumert et al (2010) demonstrated a substantial influence of teachers’ pedagogical content
knowledge (PCK) on s tudents’ learning gains over one year in 194 G erman Year 10
classes. They also found that strong content knowledge (beyond the year 10 c ontent)
matters most by enabling the development of good PCK.
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There are many excellent programs which bring research on student understanding to
teachers, principally through teacher education, professional development and behind-the-
scenes influence on the school curriculum and textbooks. For example, the Australian early
years numeracy programs transposed fundamental research on learning into practical
programs that increased teachers’ understanding of the stages of learning and showed how
to use this knowledge in school. This paper describes a different approach to put research
into teachers’ hands, using new technology at the point of need. It is experimental and
incomplete, yet demonstrates what is possible.

Specific Mathematics Assessments that Reveal Thinking

Along with Beth Price, Eugene Gvozdenko and Vicki Steinle (and earlier Helen
Chick), I have designed a computer-based assessment tool for teachers of students in
approximately Years 5 — 9. ‘Smart tests’ (an abbreviation of “specific mathematics
assessments that reveal thinking”) are now being used by many teachers through the
website www.smartvic.com. As of June 2013, there are tests on about 60 very specific
topics, nearly all with pre- and post-test pairs. The tests are short, completed online, and
results are immediately available to teachers. The intention is that teachers will use them
just before teaching a topic to better understand the needs of their own students, so they can
have a direct influence on the instruction provided. This is one type of formative
assessment. Interventions which provide ‘assessment for learning’ have been shown to
have a strong impact on learning outcomes. Some teachers use smart test results to identify
groups for specific assistance, and other teachers adapt their plans so that their lessons
match more closely where the class is. Perhaps surprisingly, often teachers have reported
starting at a more advanced point than they expected (Steinle & Stacey, 2012).

As the diagram in Figure 1 shows, smart tests are intended to impact directly on
learning, as teachers better adjust instruction to what the students know, but they are also
intended to impact on learning indirectly. As teachers use the tests and act on the diagnoses
of students’ understanding, it is hoped that they will come to understand in a very practical
way how students are likely to think about the topic, the common errors and
misconceptions that they might have and how the topic develops from simple to advanced.
It is hoped that the outcome will be an increase in teachers’ PCK. In this way, the smart
tests may become redundant, as teachers take care to develop strong concepts in students,
modify their teaching to reduce the likelihood of misconceptions, and have ready access to
items which reveal understanding to monitor their classroom practice and student progress.
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Figure 1. Smart tests are hypothesized to improve learning through two pathways.
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An Example: Reflections Smart Test

In this section, many aspects of smart tests are illustrated using the example of a test on
Reflections. Other publications have described other aspects of the test design with other
sample topics, such as understanding of algebraic letters (Steinle, Gvozdenko, Price,
Stacey, & Pierce, 2009), and line graphs (Stacey, Price & Steinle, 2012). There are
currently two geometric transformations tests: Reflections and Rotations.

The Australian Curriculum (ACARA, n.d.) describes work on reflections in the
‘Location and Transformation’ sub-strand. At Year 2, students can explain the effect of a
flip (reflection) knowing, for example, that objects move without a change in size or
features other than orientation. In Years 3 and 4, students identify line symmetry (e.g. in art
and the environment), and make use transformations to make patterns from shapes. In
Years 5 and 6, s tudents identify reflections concretely by flipping and folding two
dimensional shapes, describe the effect of combinations of transformations, and describe
simple reflections using coordinates. By Year 7t hey work with generalizations and
combinations of transformations, perhaps finding out that the effect of reflection in two
parallel mirror lines is a translation. After Year 7, knowledge of transformations is used to
test for congruence, and the coordinate work leads to transformations of graphs. The
description above establishes that at the end of the middle years of schooling, students
should be familiar with three somewhat different aspects of reflections (i) as flipping where
the action of turning over is the dominant idea and (ii) as folding or reflecting in a mirror
(line of symmetry), where the dominant idea is of two parts, identical except for
orientation, and (iii) formalizing this to the mathematical description of an object, a line of
symmetry and an image. The Reflections smart test examines the mirror/fold aspect of
single reflection transformations.

Figure 2a shows one Reflections items where students drag a tiny ‘card’ to show the
image of a point under reflection. The instruction is:

“Blobs of paint are dropped on paper. The paper is folded along the black lines. The wet paint

makes new copies of the blobs on the paper. Drag [the] blob from the bottom to the correct spot to
show how the new copies of the blobs will look.” (www.smartvic.com)

The screens are illustrated (with labels added) in Figure 2b. Students can experiment
by moving the image blob around the screen, until satisfied with its position. Other items
use differently placed blobs and complex shapes, with differently oriented fold lines. As far
as possible, smart tests avoid technical language and use tasks that are as realistic as
possible. The folding scenario seemed to fit these criteria.

drag image from here
|§| fold L8]

Figure 2. The task of reflecting a point in a vertical line, with dragging illustrated.

The reflections test demonstrates how computer-based assessment can now provide a
range of engaging tasks, well beyond the text-based, multiple choice restrictions of some
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years ago. In this case, drag and drop in a web-delivered test (programmed for desktops and
tablets) delivers practical tasks to demonstrate understanding. E ven more usefully, the
smart test is programmed to assess students’ work and identify their common errors, both
of which are time consuming work for teachers. The report is immediately available.

By the end of 2012, the Reflections test had been used by 504 students of volunteer
teachers. Ten teachers provided most of the data. 88% of the sample is in Year 7 and 12%
in Year 8. Figure 3 shows scattergrams of where the images of the blobs were placed by a
sub-sample of 90 students. The scattergrams do not show the number of placements at each
position, but the spread and density of dots gives a general impression of the responses.
Figure 3a shows a solid blob to reflect, the correct placement of the image, and student
responses. It demonstrates that reflection in a vertical line is usually well done, although
many students do not attend carefully to the distance. Isolated dots probably come from
students who did not understand the task, or who did not finish their response. When
generous tolerances for judging equal distances were allowed, 82% of students were
correct. Figure 3b shows the difference when the fold line is not vertical, with success rate
dropping to 25%. Most know that the image will be in the bottom right hand corner, but
not exactly where. Many of the images are on the same horizontal level as the original,
because many students act as if all folds are vertical or horizontal.

The cluster of placements at the top of Fig. 3b scattergram reveals a different common
error. Some students fairly consistently place the image to achieve ap leasing visual
balance (in fact it is rotational symmetry about the midpoint of the fold line, but students
would not analyse it this way). The small cluster in the lower right hand corner of Fig 3a
exhibits the same thinking. It has been reported in the research literature for many years
that these are common errors (see, for example, Kiichemann, 1981; Schultz, 1978).
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Fig 3a. Placement of images of black circle. Fig 3b. Placement of images of open circle.

Figure 3. Scattergrams of students’ placement of reflections of simple shapes.

Figure 4a shows one of several tasks requiring reflecting a complex shape. Only a
handful of students were correct on this item. Students select the fish image that is in the
correct orientation and drag it into position. First, they can experiment with the images,
moving them anywhere and replacing as required. Currently, rotation of the drag image is
not possible in our software. The results confirm the previous findings. The most
commonly selected image is the fish reflected in a vertical line, with placements shown in
Figure 4b. This shows again how the horizontal and vertical dominate impressions of
symmetry. Many students believe that objects that look horizontal or vertical always stay so
under reflection. In fact over 90% of students selected one of the four “horizontal” images
(first, second, fourth, fifth in Figure 4a). There is as trong ‘gestalt’ preserving the
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horizontal and vertical. Only 4% selected the correctly oriented fish (Figure 4b), and many
fewer also positioned it adequately. The balance interpretation is evident in Figure 4c. The
image selected is rotated by 180° (upside down, turned fish), mostly positioned in the top
left corner, ‘balancing’ the original in the right lower corner. Bell (1993) explained this as
an association of “reflecting with various pairs of opposites such as forwards and
backwards, towards and away, left and right, upwards and downwards” (p. 131).

Fig 4a.
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Figure 4. Reflect a complex shape: item and scatterplots for three oriented images.

From Reponses to Results: Evidence Identification and Accumulation

After students complete a test, the next process is evidence identification — what
information can be drawn from the responses. For the Reflections test with its drag and
drop format, the images selected and their exact placements can be automatically scored,
giving correct/incorrect information, although setting realistic tolerances is tricky. Success
or an error can be classified by automated checking in which nominated region an image is
placed and how it is oriented. Crucially, for an understanding of students’ thinking that can
lead to better teaching, it is not just correct/incorrect that is important, but finding and then
reporting the patterns in students’ responses that reveal their thinking. This is a unique
feature of the smart tests: the items are planned with this ‘mapping of learning’ in mind
(Steinle & Stacey, 2006) and patterns in the responses are sought. The smart tests report in
two ways, described below.

Developmental stages. There are many possibilities for reporting students’ results to
teachers. The approach selected for the smart tests is to describe learning in terms of stages
along a developmental sequence, one sequence designed for each test, supplemented with
additional information about common errors. Developmental stages highlight a small
number of important underlying ideas, to address in teaching. This approach was discussed
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by Stacey, Price and Steinle (2012). The developmental stages for Reflections are shown in
Table 1, with the percent of sample students at each stage in the final column. We often
observe that the percentages in different classes vary markedly, so the averages are often
not a good guide for the teaching of any one class. In this case, the first draft of the stages
proposed that students would first be able to deal with simple shapes (e.g. blobs) with
horizontal or vertical fold lines, then with oblique lines, and then master complex shapes.
However, the stages below better fit the data. Stacey et al (2012) describe the data analysis
processes. Stage descriptions need to be easy for teachers to understand and easily related
to teaching actions since face-to-face professional development is not available on-line.

Table 1
Developmental stages for Reflections smart test (2013) with percent at each stage

Stage Description % at stage™
(N =504)
Stage 1  Students have a general but imprecise idea of reflection 35%

Stage 2 and can accurately reflect simple and complex shapesina  34%
horizontal or vertical line

Stage 3 and can reflect a simple shape (such as a circle) in any line, 9%
including oblique lines

Stage 4 and can reflect a complex shape in any line, including 1%
when the shape and the mirror are not visually aligned

* 21% of students are below Stage 1

Identifying mistakes, missing knowledge and misconceptions. In addition to indicating a
developmental stage, test responses often reveal why students do not perform at a higher
level, and so smart tests also report students’ systematic errors to teachers. Identifying
systematic errors across multiple responses is interesting but can also be a tedious and
complex task, so there are real advantages here in computer diagnosis. For example,
students who reflect as if all fold lines are vertical or horizontal can be identified from their
responses as in Figures 3a, 3b, 4b. Looking for patterns in responses across items requires
significant evidence accumulation and so the smart tests need considerable complex
programming operating in the background to make this possible. One of the many
programming challenges for our work is to distinguish serious errors worth reporting from
‘careless mistakes’ caused only by inattention. As more data becomes available, we refine
the criteria for deciding that an error is likely to be systematic and important, and which
items contribute to its diagnosis. Teachers who know about likely misconceptions or other
systematic errors can plan teaching to address or avoid them. If they have information
about individual students in their own class, they can provide targeted remediation.

The systematic errors identified by the Reflections test relate to the horizontal-vertical
dominance, the ‘balance’ positioning, and getting either the distance or orientation
consistently wrong. As with all categorisations, somewhat arbitrary decisions need to be
made about where to draw the line in reporting on such errors. For instance, the percentage
of students reported as making ‘balance’ placements will vary widely depending on
decisions about the placement tolerances allowed, the number of items over which
consistency is sought, and unique characteristics of the items. For example, the percentage
of balance placements for the item in Figure 3b was around 5% (504 students), but for
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another apparently similar ‘blob’ item it was around 30%. This is probably because item 3b
was given in conjunction with another blob placement and those two blobs together
stimulated a horizontal gestalt, which dominated the wrong answers, and consequently
reduced the number of balance responses. Making decisions about what is useful to report
needs extensive data, and asense of what would be useful for teachers. Because it is
formative, rather than summative assessment, it is better to over-report than under-report.

Implications for Teaching about Reflections

Taking an overview of this data provides important information for teaching. From
their practical experiences at school in flipping and folding, it seems that many students
have a general visual understanding of reflection (and line symmetry) but it is vague and
they do not analyze the situations mathematically. Some do not appreciate that the folding
process makes the distances from the fold line equal and why. Many only vaguely visualize
folding when the fold line does not appear horizontal or vertical on the paper. In case it is
thought that such fold lines do not occur in real life, consider those in Figure 5. M any
students miss the flower’s oblique lines of symmetry, or exhibit the common
misconception of assuming line symmetry when two halves of a shape are congruent.

Figure 5. Lines of symmetry that are not horizontal or vertical are harder to identify.

The Australian Curriculum rightly identifies geometric transformations as a topic
which lends itself to practical exploration, having strong links to the real world and with
potential to enable students to be creative e.g. in making beautiful symmetric designs. It
describes the learning experiences with verbs such as investigate, identify and create. What
is less evident in the description is that symmetry is a real world phenomenon which has to
be mathematized so that visual impressions form the foundation for abstraction and
generalization with predictive power. Students must impose a precise mathematical lens
on pictures and objects and actions. The missing activity verb from the Australian
curriculum is measure: measuring lengths and measuring angles to discover and make
precise the mathematical properties. There are subtleties in the move from the real world to
the mathematized world. For example, manually flipping a concrete object (e.g. a
cardboard shape) involves a physical rotation around a line through the third dimension.
With concrete objects, reflection can only be achieved by rotating. Flipping is good for
seeing the change in orientation under reflection, but it does not assist with the position of
an image or any notion of a line of symmetry. O n the other hand, from practical
experiences measuring the effects of folding, students can begin to develop the concepts of
object, image and line of symmetry and the basic mathematical rules. An important part of
PCK is knowing how to make transitions from practical to mathematical experiences.

Further increasing teachers’ PCK. One function of smart tests is to demonstrate some
of the dimensions of complexity which make mathematical tasks more challenging, and
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which need to be included in teaching: in this case, object complexity and the orientation
of the fold line to the paper and of the object to the fold line. However, teaching advice
needs to give information to teachers about other types of tasks for reflection, which get
students to think in other ways: finding lines of symmetry in shapes such as in Figure 5,
drawing the line of symmetry given the object and image, and combining transformations.

Conclusion

Smart tests provide a different type of formative assessment, aimed at activating
research on s tudents’ understanding for use in classrooms. Teachers can learn about
individual students. Where results are puzzling, they can look through the individual
students’ responses. They can plan teaching directed more closely to the needs of the
individual, group or the class. We also hope that the test items and the reporting of the
results highlight for teachers demonstrate (part of) the range of tasks that needs to be
encountered as students learn about a topic. As Agent Smith said in the film ‘The Matrix’:
“Never send a human to do a machine’s job.” In formative assessment, we hope to be
breaking new ground in what is best done by a teacher and what is best done by a machine.
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The Beginnings of MERGA

Preamble to the Annual Clements/Foyster Lecture

In the middle of 1976 John Foyster, who was then based at the Australian Council for
Educational Research (ACER), came to see me at Monash University, where | was in charge of the
Mathematics Education program. John talked about how the Australian Science Education
Research Association (ASERA) had recently been established, with Professor Richard Tisher (then
of Monash University) as the prime mover. John wondered whether the time was ripe for a similar
national group interested in mathematics education research to be established, and asked whether
he and I might take steps to establish such a group.

My immediate reaction was yes, we should do it. Then came the doubts and reservations. How
would the Australian Association of Mathematics Teachers (AAMT) react to such an initiative?
After all, AAMT already had a “R esearch Committee.” In any case, would there be enough
mathematics educators in Australia, interested in such a group to make it a viable proposition?
Who would provide the funds likely to be needed for the establishment of such a group?

It was John’s and my opinion that the AAMT Research Committee had not reached out to
embrace most of the people lecturing in mathematics education in Australia at teachers colleges or
in universities at that time. Intuitively, I thought Australia needed a group like the one John was
proposing. My intuition told me that AAMT was not the organisation to move towards the
establishment of such a group.

John assured me that he would put up any funds needed to get the group going (and, hopefully,
any group that was established would be able to pay him back within a few years). Hence we
decided to proceed with the idea of establishing the group and to strike while the iron was hot, so
to speak, by conducting a national conference at Monash University in the middle of 1977. I came
up with the name “Mathematics Education Research Group of Australia” which John liked
because of the acronym MERGA, which suggested a “merging together.” We sent out notices of
our intention to form MERGA late in 1976. Neither of us knew many of the people who might be
interested in joining such a group, so the notices were addressed to the “Mathematics Lecturers at

Soon after we had decided to go ahead, I heard of the existence of a group, based in New
South Wales, called the Mathematics Education Lecturers’ Association (MELA). John and I talked
about whether MERGA and MELA might become one from the outset, but we decided that the
aims of MELA seemed to be sufficiently different from those that we envisaged for MERGA,
focused far more on research than lecturing, that we should proceed with the MERGA 1idea.

And so it came to be that in May 1977, the first of what was to become the annual conference
of MERGA took place. About 100 people attended, with papers frenetically being read from 9 am
to about 10 pm, for three days, in a Rotunda Theatre at Monash University. Professor Richard
Tisher was present at the start of the Conference, and talked of his experiences in establishing
ASERA. Frank Lester, of Indiana University, was among those present. In the event, two volumes
of papers read at the Conference were produced (the first volume being available on the first day
of the Conference, and the second several months later).

At a post-Conference meeting it was decided that, yes, MERGA should be formed, that the
second meeting would be at Macquarie University in May 1978, and that an annual conferences
should be held each year at a different academic institution. At that second conference it was
decided by those present that MERGA should continue and a constitution and election of offices
would be decided on at the third conference to be held at the then Brisbane College of Education.
And so MERGA was born.

Ken Clements
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