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This study investigated the recordings of fraction notation, when the number of fractional
parts exceeded the whole, made by 79 Year 4 students from two schools serving quite
different communities. Approximately 30% of the Year 4 students changed the name of the
denominator when the whole was exceeded by one unit-fraction; for example, the fraction
name changed from quarters to fifths when creating 5 quarters. This practice of changing
the name of the fractional part when the whole was exceeded was evident in both schools.

“The teaching and learning of fractions is not only very hard, it is, in the broader
scheme of things, a dismal failure” (Davis, Hunting, & Pearn, 1993, p. 63). Based on the
performance of students on fractions questions in the National Assessment Program -
Literacy and Numeracy (NAPLAN), the teaching of fractions remains a persistent problem
in Australia. In the 2008 Y ear 7 non-calculator paper, over 70% of the cohort could not
correctly interpret area models corresponding to three-quarters. Similarly, when asked to

identify the remaining fraction of a potting mix, given it was % soil and 4 sand, over

157 000 Year 7 students, or 57% of the cohort, selected either 2 or % (Siek Toon, personal

communication, 17 F ebruary 2010). That is, over half of all of the Year 7 students in
Australia selected fraction answers based on adding numerators and denominators, a
misinterpretation of the meaning of the fraction notation.

The unique nature of the fraction notation, representing both process and product,
provides a substantial challenge to the teaching and learning of fractions (Steinle & Price,
2008; Yoshida & Kuriyama, 1995). The parts-of-a-whole explanation of “%” as “two out

of three” that arises from working with partitioned models of fractions, becomes confusing

when the whole is exceeded in needing to form “ %.” In a study of responses to fraction

tasks involving 1676 students from over 90 c lassrooms across New South Wales, the
introduction of questions involving the fraction notation increased the variety of incorrect
interpretations of fractions (Gould, 2008). This reinforces the concern that the fraction
notation may influence a number of fraction misconceptions (Pearn & Stephens, 2004).

Accounts of students transforming the identities of fractional parts when the whole is
exceeded have come from teaching experiments involving iterating fraction parts in a
computer environment (Tzur, 1999). When some students iterated a unit fraction beyond
the whole, they changed the name of the fraction; for example from fifths to sixths.
However, these teaching experiments were not focused on students’ use of notation. Hence,
there were two main foci for this study. First it sought to determine if renaming of fraction
parts when the whole is exceeded occurs naturally outside of intensive teaching
experiments. Second, it sought to investigate how students used fraction notation to record
improper fractions.

To gain a better understanding of the role that fraction notation plays in the formation
of the concept of a fraction as a quantitative measure, the accommodations Year 4 students
make to their use of the fraction notation when fractions exceed one-whole were examined
in two schools serving quite different communities.
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Linking Notation to Part-Whole Models of Fractions

Common fractions are frequently introduced to students in Australia through contexts
such as sharing food (Way & Bobis, 2011). In classrooms, shading partitions of shapes
such as circles and squares often follows discussions of what constitutes “half an apple” or
“a quarter of a sandwich.” Shapes such as circles or squares are frequently used as models
of the “whole” when describing the relationship between the parts and the whole. Within
this paper I distinguish between the interpretations of fractions, and the models used to
introduce fractions. Models are often used to represent mathematical ideas. Three common
fraction models typical of school textbooks are the /inear or length model, the area model
and the discrete or set model (Watanabe, 2002). It is important not to confuse the various
interpretations of fractions with the fraction models themselves, as the part-whole fraction
interpretation, for example, can be applied to each of these models. The term fraction
model 1s used in this paper to refer to something used in teaching to present the
mathematical entity of a fraction. However, the way that a student chooses to interpret a
given fraction model will vary.

When fraction notation is introduced in classrooms, it is used as a way of referencing a
part-whole interpretation of a model (Boulet, 1998). That is, the notation used for fractions
is intended to initially point to or index physical objects and, ultimately, the mathematical
object of a single relational number. This dual use of the fraction notation, initially
indexing physical objects as parts of a whole as well as a single number, passes without
comment in classrooms. The ambiguity associated with the use of the fraction notation may
in turn contribute to the fragile grasp many students have of the mathematically powerful
notation, as a child’s understanding of either fraction notation or part-whole relations does
not ensure understanding of the other (Saxe, Taylor, McIntosh, & Gearhart, 2005).

Hiebert (1989) noted that written symbols function both as records of things already
known and as tools for thinking. He argued that one of the factors contributing to students’
poor performance on fractions was the tenuous connection between the form of fractions
and a robust conceptual understanding of fractions. It is clear that the links students make
between the meanings of the fraction symbols and understanding fractions as mathematical
objects are often very weak (Charalambous & Pitta-Pantazi, 2007; Gould, 2005; Wong &
Evans, 2008).

The parts-out-of-a-whole interpretation of the

g w2

b 3
as “two parts out of three,” but unless the notation is divorced from this way of referencing

the context, %” does not make sense.

notation may give meaning to

Different Ways of Interpreting Fraction Models

Using simple part-whole interpretations of fraction models as the primary means of
defining fractions has clear limitations (Freudenthal, 1983) because a student may focus on
numeric values associated with discrete parts, rather than the relationship between the parts
and the whole. As Kieren (1988) explained:

Because part-whole models of fractions conveniently help produce fractional language, the school
mathematics fraction language of teacher and texts alike tend to orient a student to a static double
count image and knowledge of fractions. The child, while being able to produce “correct” answers to
questions, develops a mental model which is inappropriately inclusive (parts of a whole), rather than
a powerful measure of inclusion (comparison to a unit) ... (p. 177)
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A focus on the parts that make up the whole can lead to an additive interpretation of the
fraction notation, rather than a multiplicative comparison of the part to the whole. Many of
the problems associated with learning fractions have been attributed to teaching efforts that
have focussed almost exclusively on the part-whole interpretation of fractions (Streefland,
1991). Despite the limitations of part-whole interpretations of fraction models, many
curricular offerings emphasise part-whole interpretations of fraction models almost
exclusively in the primary years (Middleton, Toluk, deSilva, & Mitchell, 2001).

Fraction Schemes and Operating with Units

In recent years there has been a focus on describing schemes that support children’s
development of fraction-based reasoning (Hackenberg & Tillema, 2009; Steffe & Olive,
2010; Tzur, 2000). The various schemes have been proposed as models of students’
thinking. Central to describing these schemes is the way that students operate with units
and coordinate units in giving meaning to fractional quantities (Hackenberg, 2007;
Watanabe, 1995). The schemes used to characterise students’ thinking include the
simultaneous partitioning scheme, the part-whole scheme, the equi-partitioning scheme,
the partitive fractional scheme, the reversible partitive fractional scheme and the iterative
fractional scheme (Norton, 2008). The iterative fraction scheme includes improper
fractions. Tzur (2000) describes the iterative fraction scheme as requiring the
transformation of the iterable part

“...into an invariant, multiplicative relation between the size of an iterable unit fraction and the
whole. Here, a fraction word (“one-sixth”) and a fraction numeral (“1/6”") symbolize for the child the
size of a unit fraction that maintains a particular (1-to-6) relation to the whole regardless of how this
unit was produced (e.g., divided a whole into six parts) or which operations the child performed on it
(e.g., iterated 1/6 seven times or added 5/6 + 4/6). Put differently, the child does not lose sight of
the relative size of the unit fraction while using her or his number knowledge to operate on it. (p.
143)

In a teaching experiment with two fourth-graders designed to explain children’s
conceptions of fractions on the basis of iteration of units, Tzur (1999) noted that an unusual
thing occurred when the students attempted to produce an improper fraction; that is, a
fraction greater than one, via iteration of a unit fraction. They correctly regarded the non-
unit fraction produced by iterating, say, % four times as %, but when they iterated the same

% six times, they thought of the result as g and each part was then regarded as %. The

students had been engaging with these iteration tasks in a computer microworld. When the
process of unit iteration produced a set larger than the reference whole, it was as if it were
regarded as a different set.

Describing what happens when students attempt to produce improper fractions through
unit iteration was addressed by Hackenberg (2007) in a year-long teaching experiment
involving four sixth-grade students. One of the tasks analysed involved asking two of the
students to draw seven-fifths of a candy bar, given the drawing of the rectangle on their
paper represented one candy bar. Although both girls correctly created seven-fifths of the
rectangle with one of the girls stating that she knew that seven-fifths was one and two-
fifths, when asked about the size of the pieces in the bars they had drawn, the girls
maintained that the pieces were sevenths. Clearly something unexpected was occurring
when a fraction part was iterated beyond the whole.
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Method

The preceding descriptions of students transforming the identities of fractional parts
when the whole is exceeded have come from teaching experiments involving iterating
fraction parts in a computer environment. This study was designed to determine if this
transformation of the identities of fractional parts could be detected in students’ fraction
notation when students had not engaged with unit iteration in computer microworlds.

Participants and Tasks

Year 4 classes in two primary schools were selected to complete two tasks. The two
schools served markedly different communities. The Index of Community Socio-
Educational Advantage (ICSEA) for one school was more than 1 standard deviation below
the ICSEA mean while the other school was 1.75 standard deviations above the mean.
These measures of socio-educational advantage are sufficiently far apart (over 2 standard
deviations) as to reflect real differences between the school communities. Two classes
provided 48 responses from the low ICSEA school and one complete class and the Year 4
component of a composite class provided 31 responses from the school with the high
ICSEA measure.

In each task the students were presented with a drawn rectangle and told that the
drawing represented a piece of chocolate. They were then asked to draw a piece of
chocolate that was five-quarters in the first, and four-thirds in the second, the size of the
representation of the piece of chocolate. The fractions in the questions were written in
words and the classroom teachers could read the questions to their students. Students work
with models of fractions with denominators 2, 4, and 8 before the end of Year 2 but are not
formally introduced to thirds until Year 5.

Results and Discussion

The size of the units the students formed was recorded, along with the notation used to
record the fraction units. Using only the word “quarter” to describe the size of the fraction
pieces was considered a separate category of answer (Table 1) because this term was used
in the question. The idea that five-quarters can become five-fifths was not restricted to one
school, with approximately 30% of the Year 4 students at each school recording five-
quarters as fifths.

Table 1

Year 4 students’ fraction labels when drawing five-quarters

Notation High ICSEA Low ICSEA Total
Named fraction as 4 12 14 26
Named fraction as 4 11 14 25
Named fraction “quarters” 2 11 13
Omitted fraction name 3 7 10
Other 3 2 5
Total 31 48 79
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“Other” responses included labelling the fraction parts with counting numbers (two
students, one from each school), inverting the fraction notation scheme and answering “ 5”

(one student), answering “1.5 cm” which corresponded to one-quarter of the length of the
original fraction bar (one student), and writing “ 3” (one student).

When asked to draw a piece of chocolate ﬁve-quarters the size of the one presented,
almost the same number of Year 4 students used the fraction notation for fifths as used the
notation for quarters.

Naming the five quarters as fifths does not appear to be influenced by the difference
between the ICSEA measures for these two schools. Using a chi-square test to compare
results from the high ICSEA school with the low ICSEA school, a 0.051 evel of
significance and one degree of freedom, any hypothesized difference between the two

schools failed to produce a statistically significant value, ;(2 (1, N=79)=0.35, p=0.56.

Transformed fraction identities and measurement

The renaming of the fraction parts (from % to %) did not appear to be influenced by the

measurement skills of the students. In Figure 1 the answer is apparently formed without
attention to the length of the original unit, as the result is approximately half the length of
the initial drawing of the chocolate.

1. This drawing represents a piece of chocolate.

Draw a piece of chocolate that is five-quarters the size of this piece of
chocolate.

1/ 5 /o /‘ { [y

What is the fraction name of each of the parts in your drawing?

Figure 1. Each quarter is recorded as one-fifth.

Even when the diagram was carefully drawn to the correct size (Figure 2), the
nominated value of the fractional parts could still be transformed.

1. This drawing represents a piece of chocolate.

L ]

Draw a piece of chocolate that |5§4f|\re quariers the size of this piece of
chocolate. — T 5_41

I

]
H

T
-'_
"6 ‘ 0
What is the fraction name of each of the parts in your drawing?

Figure 2. Each quarter of the original rectangle recreated and labelled as fifths.
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The initial rectangle was partitioned into four quarters. The size of the quarters was
effectively replicated in producing the five-quarters requested, but with the names of the
fractional parts changing to fifths. That is, the size relationships of the fractional parts
appear to be maintained but the notational tags have changed. What started as quarters has
been given a new name when the quantity exceeded one whole-unit (with four one-fifths
clearly forming the whole).

Creating a new “whole”

Sometimes a whole corresponding to five-fifths appeared to be created (Figure 3).
Here, increasing the size by aq uarter resulted in a diagram larger than the initial
representation of the chocolate, accompanied by notation showing a new accumulation of
parts (in a similar way to the response in Figure 1).

1. This drawing represents a piece of chocolate.

L |

Draw a piece of chocolate that is five-quarters the size of this piece of

chocol?_‘{g T i ’ ; I
2S5 | 55
5ls 5[5 [5

Figure 3. Five quarters recorded as fifths.

Comparing Figure 1 with Figure 3, the length of the representation does not appear to
influence the change in notation. The attribute of length may not be essential to a student’s
use of an apparently linear model to represent the whole.

Kieran’s depiction of the notational change when the whole is exceeded (Figure 4) was

unique.
What is the fraction name of each of the parts in your drawing?
[& 1+ To TE e
L s £ | | &

¥

Figure 4. A change in the fraction notation beyond one-whole.

For Kieran, four units of % still appeared to represent the whole, but the fifth-quarter

%. This response captured what might be a transition in Kieran’s thinking.
That is, the notation associated with the iteration of the %—unit suggests that four-quarters

still represent the whole but the fifth quarter is now one of five equal parts and so earns the
notation of 1.

was recorded as

The transformation that takes place when the number of fractional units exceeds the
whole can also create a new whole composed of five-fifths (Figure 5), as well as an
additional fractional part retaining the notational label %

30



1. This drawing represents a piece of chocolate.

Draw a piece of chocolate that is five-guarters the size of this piece of
chocolate.

A S A
What is the fraction name of each of the parts in your drawing?

Figure 5. Five-fifths forming the whole and the additional part described as one-fifth.

The second task also saw a substantial proportion of the responses recording a
transformation of the fraction name when the whole was exceeded (Table 2).

Table 2
Year 4 students’ fraction labels when drawing four-thirds

Notation High ICSEA Low ICSEA Total
Named fraction as § 13 18 31
Named fraction as 4 11 11 22
Omitted fraction name 6 10 16
Other 1 6 7
Named fraction “thirds” 0 3 3
Total 31 48 79

Approximately 27% of the Year 4 students used notation indicating a change in the
name of the fraction parts to quarters when they were asked to represent four-thirds. The
use of the written form of the answer “thirds” was less common than the use of the written
form in the first task. Using Fischer’s exact test to compare the use of notation indicating
transformed fraction names from thirds to quarters between the two schools (high & low
ICSEA) failed to produce a statistically significant value (two-tailed p = 0.30).

If Kieran’s notation (Figure 4) was in transition in Question 1,1t showed further
development in Question 2 (Figure 6).

What is the fraction name of each of the parts in your drawing?

£ 1+ [51%]

Figure 6. Kieran’s evolving fraction notation.

This can be interpreted as an accumulation of thirds from right to left, with the final
entry showing four-thirds. That is, the three units on the right are recorded as thirds and
form a whole, but the fourth unit shows a fraction notation that could attempt to record the
fourth third. How the whole is treated in students’ recordings and notation is a good
indication of their struggle to address the sophisticated use of units at different levels
required when a unit fraction is iterated beyond the whole (Hackenberg, 2007).
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A student’s representation of fractions reflects the coordination of knowledge of
notational conventions with particular kinds of unit-based relations. However, symbolised
fraction words and notations are not identical with understanding of coordinating units at
different levels. The dual use of the fraction notation, initially indexing physical objects as
parts of a whole as well as a single number, appears to have created an unexpected (and
largely undetected) transformed use of the notation when the whole is exceeded. Clearly,
the effectiveness of the models used to teach fractions and the ways students interpret them
needs further research.

Practical Implications for Teaching

The Australian Curriculum: Mathematics (Australian Curriculum Assessment and
Reporting Authority, 2012) sets the expectation that students should deal with improper
fractions involving halves, quarters, and thirds in Year 4. Y et many Year 4 s tudents
struggle with maintaining the link between the fraction name as captured in their use of
notation, and the whole when the whole is exceeded. The fraction appears to change
“families.”

Changing the way fraction notation is introduced

Teaching experiences need to provide opportunities for students to come to know
fractions as more than simply “counting.” However, the textbooks students and teachers
engage with often start by introducing fraction symbols, and then presenting a meaning for
the symbol, as in Figure 7.

The numerator shows how many parts out of’

the whole. — 3

The denominator shows how many parts are _— 4
in the whole.

Figure 7. A textbook definition of fraction symbols.

The practice of introducing fraction notation as corresponding to two simple counts or
“Xx parts out of 'y equal parts” has many obvious limitations. Fractions depict multiplicative
relationships not additive counts. Rather than emphasising the countable features of
regional models, teaching benefits from beginning by building meaning. That is, teaching
fractions should start with problems involving sharing, slicing, and distributing rather than
fraction symbols. When the unit names associated with the multiplicative relationship
between a partitioning and the whole have been established, recording schemes can be
gradually introduced.

Streefland (1991, p. 51) used problems of sharing different quantities of pizza on tables
with different numbers of customers to introduce progressively simplified seating
diagrams. He used this context to co-construct a system of recording as a transition towards
the fraction notation (Figure 8).

OC ®
4

@]

Figure 8. A seating arrangement with a “table symbol.”
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As well as questions involving sharing, say, 3 1 amington fingers among 4 pe ople,
equivalence can be introduced with questions such as: “Do you get more, less, or the same
if 6 lamington fingers on a table are shared equally among 8 pe ople?” The process of
division, as the inverse of multiplication, is essential in creating multiplicatively related
fraction quantities. Improper fractions involving quarters can develop from arrangements
such as a table with 5 lamington fingers that are shared equally among 4 people. Drawing
what each person would receive is a helpful way of linking the measurement sense of
fraction units with the “table symbol.”

Dealing with fractions greater than one can also emphasise the multiplicative
relationship between the part and the whole. Mathematics ultimately requires abstract
representation, but young children understand such representation more readily if it is
derived from meaningful experience than if it results from learning definitions and rules.

Introducing the constant whole

If students are to develop an understanding of fractions as mathematical objects, the
idea that fractions reference a constant whole needs to be developed. This idea is typically
absent from current curriculum documents, or, at best, is only implied. Students need
opportunities to recognise that partitioned fractions are always dependent upon the whole
of which they are part. It is essential to establish the idea of the equal whole (or universal
“one”) as part of the concept image of students before any meaning can be given to
operations on fractions. The symbolism %+% has no m eaning without reference to a

universal equal-whole.

In the early years, students can be asked to share fairly two similar but unequal lengths
of liquorice between two people. That is, they are able to use two different sized units. In
later years, reconstructing the whole from a non-unit part can make the whole explicit. For
example, students could be provided with a tower of six connected blocks, and asked to
indicate how high the full tower would be if what they had was three-quarters of the whole
tower.

Linking the fraction notation to division contexts

Rather than starting with the symbols, fractions should be introduced through equal
sharing contexts that use countable continuous quantities that can be cut or divided. These
problem contexts yield results equivalent to improper fractions as well as proper fractions.
However, the real challenge remains in linking the meaning of the fraction notation to the
problem contexts. A notation that is closer to representing the results of an indicated
division, such as Streefland’s table symbol, may be more helpful than a notation defined as
“x parts out of y equal parts.” If we want students to engage with improper fractions, they
need opportunities that move beyond associating the name of the fraction family, the
denominator, only with a number of parts.
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