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The Accelerating the Mathematics Learning of Low Socio-Economic Status Junior 
Secondary Students project aims to address the issues faced by very underperforming 
mathematics students as they enter high school. Its aim is to accelerate learning of 
mathematics through a vertical curriculum to enable students to access Year 10 
mathematics subjects, thus improving life chances. This paper reports upon the theory 
underpinning this project and illustrates it with examples of the curriculum that has been 
designed to achieve acceleration. 

An inability to use mathematics to effectively meet the general demands of life has 
serious impacts upon an individual’s employment opportunities and life chances. 
Quantitative and anecdotal evidence suggest that many Australian students entering junior 
high school, especially in low socio-economic status (SES) areas, do not have the requisite 
level of numeracy to engage and continue in learning. The Accelerating the Mathematics 
Learning of low Socio-Economic Status Junior Secondary Students project, or more simply 
XLR8, will build theory to inform practices that scaffold the accelerated learning of 
mathematics by underperforming junior secondary students.1 It is anticipated that a 
successful program of accelerated learning will advance underperforming students to levels 
normally associated with their year level in a compressed amount of time, and so prepare 
these students to successfully undertake Year 10 and post-compulsory mathematics study 
at elementary (and above) levels with the view to entering tertiary education and/or 
apprenticeships/traineeships. 

The XLR8 project is only in its early stages; it began in late 2012, with the first 
classroom teaching of the XLR8 curriculum beginning in the first term of 2013. Achieving 
the goal of increased employment potential and life chances is complex. This paper focuses 
on the conceptual framework for an accelerated learning curriculum. This theoretical 
positioning is augmented with an overview of the project’s research design and an example 
learning sequence taken from the XLR8 curriculum. 

A Conceptual Framework for Acceleration 

The project’s conceptual framework brings together the theoretical lineage of 
cognitivist ideas (Cooper & Warren, 2011; Warren, 2008; Warren & Cooper, 2009) with 
the culturally-based ontological viewpoint of Matthews (Matthews, 2009; Matthews, 
Cooper, & Baturo, 2007) and a complementary pedagogical framework, with ideas related 
to professional learning that supports the development of teaching-learning trajectories 

                                                 
1 The XLR8 project is an extension of an earlier project for Aboriginal and Torres Strait Islander students 
called Accelerated Indigenous Mathematics. 
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(Baturo, Warren, & Cooper, 2004; Guskey, 2002). These are summarily discussed in the 
following paragraphs. 

Structured Sequences 

The longitudinal Early Algebraic Thinking Project (EATP) (Warren & Cooper, 2009) 
followed the development of algebraic thinking amongst primary-aged children. 
Conceptually, the project adopted a structural, cognitivist perspective, framed by such 
works as Sfard (1991), English and Halford (1995), and Hiebert and Carpenter (1992). 
Warren and Cooper described mathematical understanding to be of the connectedness of a 
learner’s internal mental models (or mathematical ideas). In turn, the development of such 
a connected schema is via cognitive processes that determine the structural similarities and 
differences between mental models which in turn lead to the construction of more abstract 
mathematical ideas. Central to Warren and Cooper’s work was the cognitive interplay 
between what they identified as models and representations. In their words, “models are 
ways of thinking about abstract concepts” and “representations are the various forms of the 
models” (Warren & Cooper, 2009, p. 78). To augment their conceptual framework, Warren 
and Cooper drew upon relevant theory regarding the use of representations in mathematics. 
This included Bruner’s (1966) enactive-iconic-symbolic representation sequence, Dreyfus’ 
(1991) sequencing of representation use and Duval’s (1999) notions regarding the 
importance of the coordinated use of representations, including verbal language. While not 
explicitly identified, Payne and Rathmell’s (1975) assertions regarding the significance of 
verbal language when coordinating the use of representations were also evident in Warren 
and Cooper’s conceptual framework. Related to the use of representations, Warren and 
Cooper also drew upon Filloy and Sutherland’s (1996) notions of translation (the use of 
increasingly abstract representations) and abstraction (the activity-based construction of 
higher level mathematical constructs), noting that without intentional teacher intervention 
often the construction of more abstract, or formal, mathematical ideas may not occur. 

Warren and Cooper (2009) re-examined the EATP dataset and drew nine conjectures 
regarding the use of models and representations in relation to algebraic thinking. From 
these, six interrelated general hypotheses were made regarding the use of models and 
representations, which have been paraphrased as: 

1. The processes leading to the construction of an abstract concept occur across 
models and representations and follow a structured sequence. 

2. Effective models and representations highlight the mathematical concept to be 
learnt and are easily extended to include new components or to be applied to new 
situations. 

3. An effective structured sequence uses models and representations in increasingly 
flexible ways, has decreased overt structure, provides increased coverage and has a 
form that is related to real-world instances. 

4. An effective structured sequence ensures that the mathematical concepts are nested, 
that is, latter ideas fit ‘within’ earlier ideas. 

5. Complex procedures that involve the coordination of several parts will give rise to 
the need for a superstructure – a mathematical concept that integrates the 
coordinated parts. 

6. A mathematical concept is abstracted through the comparison of its various 
representations. 

Warren and Cooper’s identification and description of the cognitive interplay between 
concepts (both more informal models and more formal mathematical principles) is 
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consistent with Sfard’s (1991) reification theory, Gray and Tall’s (1994) notion of procept 
and, more fundamentally, Piaget’s (1977/2001) theory of reflective abstraction and the 
processes of interiorisation, coordination, encapsulation, generalisation, and reversal. 

While based upon cognitive theories regarding an individual’s sense-making, Warren 
and Cooper’s hypotheses also incorporated a social-constructivist perspective that 
recognised the trajectory of learning mathematics cannot be considered without also 
considering the intertwined teaching trajectory. The interplay and effect between teacher 
action and student learning (the teaching-learning trajectory) is evident in each of the six 
hypotheses. These hypotheses and their implications for the design of instruction form the 
first pillar of the XLR8 project’s conceptual framework. 

RAMR Cycle and Pedagogy 

Matthews (2009), an applied mathematician, provided an account of his own personal 
epistemology of mathematics. Matthews focused on the critical role that a mathematician’s 
own reality has upon their mathematical activity, stating that mathematical activity begins 
with a particular part of the mathematician’s reality – a real-life situation – from which, 
through a process of abstraction, they create a representation using a range of mathematical 
symbols. Using the representation, the mathematician is then able to explore particular 
attributes and behaviours of the real-life situation. Matthews stressed the importance of 
critical reflection to ensure that the mathematical representation and the discoveries made 
fit within the observed reality. Such a cycle of mathematisation is differentiated from 
popularly accepted views of mathematical activity by the importance placed upon the 
mathematician’s personal reality, which encompasses not only their extant mathematical 
knowledge but also their social and cultural background. Based upon Matthews’ prior 
work in Indigenous Mathematics Education (Matthews et al., 2007), Matthews claimed 
that pedagogy which is based upon reality-based mathematisation may lead to authentic 
mathematical literacy and a high standard of achievement. 

Matthews’ call for an innovative, reality-based pedagogy has given rise to what is 
referred to as the Reality–Abstraction–Mathematics–Reflection, or RAMR, cycle and 
accompanying pedagogical model. RAMR proposes: (a) working from reality and local 
culture (ensuring prerequisite knowledge and including everyday kinaesthetic activities); 
(b) abstracting mathematics concepts from everyday instances to mathematical forms 
through an active pedagogy (kinaesthetic, physical, virtual, pictorial, language, and 
symbolic representations, i.e., body  hand  mind); (c) consolidating the new concepts 
as mathematics through practice and subsequent building of connections; and (d) reflecting 
these new concepts back to reality through a focus on problem solving and laying the 
foundation for acceleration by constructing abstract, generalising concepts. The RAMR 
pedagogy, which underpins much of the current work of QUT’s YuMi Deadly Centre, 
forms the second pillar of the project’s conceptual framework. 

Professional Learning 

In the preceding sections it was claimed that a learner’s trajectory of cognitive 
development cannot be considered without also considering the trajectory of teacher 
activity (i.e., the teaching-learning trajectory). The success of the XLR8 project will be 
based upon the implementation of a mathematics program that may require major changes 
to teachers’ and students’ attitudes and beliefs towards the learning of mathematics. 
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Guskey (2002) suggested that teachers are ill-inclined to change their attitudes and 
beliefs until they have experienced practices that positively impact student learning 
outcomes. Guskey’s definition of learning outcomes is broad and includes academic 
achievement and affective gains, all of which teachers use to judge the effectiveness of 
their teaching and hence shape their attitudes and beliefs. To achieve significant and 
sustainable teacher change, and hence impact upon student learning, Guskey made three 
recommendations: (a) recognise that change is a gradual and difficult process; (b) ensure 
that teachers receive regular feedback on student learning progress; and (c) provide 
continued follow-up, support and pressure. These recommendations are echoed in the 
findings of Baturo, Warren, and Cooper (2004) who devised a set of principles and 
procedures for encouraging teacher change, including: the importance of expert 
involvement to guide a teacher’s professional growth; authentic ‘in situ’ consideration of 
the idiosyncratic needs of each teacher in their classroom; provision of adequate time for 
teachers to construct detailed teaching plans; and the provision of just-in-time support to 
teachers to address problems in a timely manner.  

A model of effective teacher professional learning and support that is inextricably 
linked with mathematical learning objectives forms the third pillar of the XLR8 project’s 
conceptual framework. 

The XLR8 Conceptual Framework 

In summary, the conceptual framework of the XLR8 project has the following three 
pillars. 

Structured sequence. The acceleration of mathematics learning will be based upon a 
curriculum that follows a structured sequence: a carefully selected sequence of focal 
mathematical concepts and a complementary set of representations that have strong 
isomorphism to the focal concepts and which scaffold the construction of understanding 
highly connected schema. The structured sequence will develop a student’s understanding 
within a particular strand of mathematics, beginning at the student’s extant understanding 
and extending their understanding as far as reasonably possible within that strand. This will 
give rise to a vertical, rather than horizontal, curriculum. Unlike more traditional horizontal 
curricula in which all strands of mathematics are visited each year, the XLR8 curriculum 
will focus intently upon a strand for an extended period of time (thus allowing the 
development of structural thinking and anticipated gestalt jumps in understanding). 

RAMR pedagogy. To realise the structured-sequence-based vertical curriculum in the 
classroom, the RAMR pedagogical framework will be adopted as the basis for planning 
modules of study. In each module several iterations of the RAMR cycle will be employed 
to develop learners’ reality-based understanding. Each iteration of the RAMR cycle will 
develop a focal concept within the strand, linking it to existing knowledge structures and 
creating new, super-structural knowledge that spans between the concepts of RAMR 
cycles. 

Professional learning. While the XLR8 research team will develop curriculum 
materials that describe the structural sequence and its development using the RAMR-based 
pedagogy, the implementation of the curriculum requires the close entwinement of student 
learning and teaching practice. To this end, significant professional learning will be 
provided to the teachers. This will take the form of: face-to-face discussions regarding the 
XLR8 curriculum (before, during, and after the delivery of each XLR8 module); the timely 
analysis and reporting of student pre/post test data, such that teachers can use this data to 
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inform their teaching; and the provision of in-class support (observation and critical 
discussion/reflection, model teaching). 

Based upon this three-pillared conceptual framework, the content of the XLR8 
curriculum to accelerate mathematics learning has been proposed and is the subject of 
refinement. In the following sections, the research methodology used to iteratively develop 
the curriculum is described and then an example of the curriculum, in particular the use of 
the RAMR cycle as the organiser of classroom activity, is presented. 

XLR8 Research Methodology 

The participants in this project are junior secondary students at five low SES state high 
schools, their teachers and other teaching staff. Two cohorts of students will be involved: 
those entering Year 8 in 2013 and those entering Year 8 in 2014. Each cohort will 
participate in the program for two years. The project is longitudinal because over the 
course of the project each participant’s development of mathematical ability and affective 
change in response to the series of interventions will be tracked. The project is iterative 
because after the application of an intervention to one cohort of students, the intervention 
and the theory upon which it is based will be refined and re-applied. 

The design of the project will be mixed method (Burns, 2000), integrating decolonising 
approaches (Smith, 1999) with predominantly qualitative methodologies and some 
quantitative methodologies. The qualitative aspect will be based upon principles of action 
research (Kemmis & McTaggart, 2000), and will use design experiments (Cobb, Yackel, & 
Mclain, 2000; Lesh & Kelly, 2000) to propose, apply, and refine the theory-based XLR8 
curriculum and the program of professional learning and support. This qualitative approach 
will allow the research to respond flexibly to the anticipated cognitive, social, and cultural 
differences in each school community. The quantitative methodology will involve regular 
pre/post testing of students and accompanying analysis to measure mathematical growth, in 
particular the acceleration of mathematical ability from lower primary to lower secondary 
levels. The results of testing will be made available to teachers as soon as possible so that 
this data can inform their teaching practice. Overall, the research will lie within the 
empowering outcomes approach to decolonising research where research is designed to 
benefit the researched. 

The XLR8 Curriculum 

The two-year vertical XLR8 curriculum is broken into 16 modules, each nominally 
5 weeks in length. The organisation of these modules is shown in  

Figure 2.  
 
 Term 1 Term 2 Term 3 Term 4 

Y
ea

r 8
 Whole-number numeration  Pattern and variable Arithmetic and 

algebraic structure 
Metric measurement 

Fraction and decimal 
numeration 

Operation concepts and 
strategies 

Shape Measurement of time, money, 
and other quantities 

Y
ea

r 9
 Coordinate systems Applications of linear 

relationships 
Equations and 
functions 

Statistical representation 

Flips, slides, and turns Projections, topology, and 
trigonometry 

Probability Statistical inference 

 
Figure 2. XLR8 curriculum scope and sequence. 
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Within each of the 16 modules the curriculum is presented as a series of RAMR cycles 
that progressively explore the content, beginning firstly with foundational concepts and 
then progressing to more complex concepts. 

Example RAMR Cycle 

The first module in the XLR8 curriculum is titled Whole-Number Numeration and 
develops learners’ ability to flexibly represent the cardinality of sets, beginning initially 
with 3-digit numbers but then progressing to very large numbers. To exemplify the 
RAMR-based approach to learning mathematics in a structurally sequenced manner, the 
first RAMR iteration of the module is described in the following paragraphs. This first 
iteration of the RAMR cycle is in a unit titled The unit, place-value and reading and 
writing of 3-digit whole numbers.  

In this example RAMR cycle, the focal concept to be developed is the notion that ‘one’ 
is the foundation of the number system. In turn, this big idea of mathematics is in two 
parts: (a) perceiving number requires flexibility in changing the unit that is counted 
(singles, groups and groups of groups can all be counted); and (b) the notion of place-value 
is developed by continuously changing the perception of unit. Across all early number 
activities, the learner’s ability to read and write 3-digit numbers will develop as they 
flexibly perceive and describe the counted unit. During the RAMR cycle, representations 
are selected that are isomorphic with the place-value concept and which can, in later 
cycles, be extended to express larger numbers. 

In the reality phase, students are firstly asked to identify as many situations as possible 
that involve the use of whole numbers and to describe what the numbers mean. The 
discussion is guided towards the realisation that some numbers represent position, some 
numbers are simply unique labels, and others (which are of immediate interest) represent 
the cardinality of a set (or, in simple terms ‘how many?’). Students are then asked to 
identify situations in which objects are treated as singles, as groups and as groups of 
groups. Examples are provided such as ‘student, class, school’ and ‘lolly, bag of lollies, 
box of bags of lollies’. At this point, students have already begun to use the focal concept 
(that the counting unit can be changed), albeit expressed informally and perhaps even 
without numbers. 

In the abstraction phase the teaching-learning trajectory moves from the concrete 
representation of quantity to the symbolic (numbers-based) representation of quantity. The 
abstraction sequence begins with a kinaesthetic body activity. One suggestion is to arrange 
the class into variable-sized groups (all of size less than ten) and to get the students to 
identify, for each case, how many groups and how many are ‘left-over’ (i.e., the ones). The 
description of ‘groups’ and ‘ones’ can be scaffolded using a large, floor-based place-value 
chart (identifying the ‘groups’ and ‘ones’ columns). The sequence then moves to hand-
based activities. One suggested activity is the manipulation of bundling sticks on a place-
value chart – synchronously adding sticks to the ones column and as appropriate trading 
them for bundles in the tens column (and, removing sticks requiring the splitting of 
bundles into single sticks). Instead of bundling sticks, paper money ($10 notes and $1 
coins) could be used. Throughout these activities, verbal language is consistently used and, 
as appropriate, the digit symbols are introduced as replacements for the manipulatives on 
the place-value chart. The previously mentioned activities may be done as a whole-of-class 
activity, or, student autonomy and peer-peer interaction could be encouraged by playing 
simple games that involve the addition/subtraction of small numbers. As proficiency with 
2-digit numbers increases, 3-digit numbers can be introduced using a similar range of 
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activities. The abstraction phase closes with mind activities which require the students to 
picture in their mind similar actions as those they previously encountered using the 
concrete materials and place-value charts. 

In the mathematics phase, learners continue to practise the flexible counting of 
different place-values and the reading and writing of those numbers. In this practice, 
emphasis should be placed upon the interpretation and creation of symbolic representations 
of numbers, and should only revert to the more informal, concrete representations as 
required (i.e., when students are having difficulty working with the abstract symbols and so 
need the scaffolding of the concrete materials). During the mathematics phase attention 
should also be paid to reversing the stimulus – students should be able to flexibly interpret 
and create verbal, word, and symbolic representations of numbers. 

In the reflection phase the teaching trajectory encourages the learners to identify the 
‘singles, groups, groups-of-groups’ pattern in a wider range of situations, including time 
(seconds, minutes, hours), fractions (quarters and wholes) and measurement (millimetres, 
metres, kilometres). Also, students could be encouraged to create their own decimal-like 
number systems which use different number names. 

This brief description of one RAMR cycle in the XLR8 curriculum has served to 
illustrate the hypotheses proposed by Warren and Cooper (2009) and their implementation 
using the RAMR pedagogical framework. The focal concept – the notion of unit and place-
value – is expressed using a range of representations that vary in abstraction but which are 
isomorphic with one another and all highlight ‘singles, groups, groups-of-groups’. Unit and 
place-value concepts emerge through the comparison of the various representations and 
situations. Initial activities were general in nature and provided an experientially 
constructed ‘nest’ in which to locate more specific and more formal representations of unit 
and place-value concepts. While this cycle is limited to 3-digit numbers, the 
representations are extendable to larger numbers and also decimal numbers. Ultimately, the 
representations will scaffold students’ construction of super-structural concepts that 
organise the entire number system. 

Conclusion 

The XLR8 project has a solid, empirically tested basis. The proposal features a 
curriculum based upon carefully sequenced instruction that leverages the interplay between 
concept and representation, the use of a reality-based pedagogy and the support of teachers 
with timely, comprehensive, and tailored professional learning. Through the intervention 
implemented by partnering teachers and careful observation and analysis of student 
learning, the project aims to extend the theory related to the structured-sequence-based 
design of instruction and its implementation using a reality-based pedagogy that will 
ultimately lead to accelerated learning, high student achievement and affective change. 
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