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In line with continuing efforts to explain the demanding nature of multiplicative reasoning 
among middle-school students, this study explores the fine-grained knowledge elements that 
two pairs of 7th and 8th graders deployed in their attempt to coordinate the known and 
unknown quantities in the gear-wheel problem. Failure to conceptualize the multiplicative 
relation in reverse, mainly due to the numeric feature of the problem parameters and  
inherent inverse proportional relationship, led the students to use more primitive fallback 
strategies. 

Multiplication and division situations have been analyzed from different orientations in 
mathematics education (Greer, 1992). For instance, Steffe (1994) analyzed children’s 
multiplying schemes from the perspective of units-coordination. Vergnaud (1988) 
interpreted multiplication and division situations in terms of dimensional analysis. 
Thompson (1994) gives accounts of multiplicative reasoning in terms of quantities and 
quantitative relationships. Schwartz (1988) argues that multiplication and division are 
referent-transforming operations and distinguishes between extensive and intensive 
quantities. Nesher (1988) analyzed multiplicative relations in terms of the textual structure 
of problems. Fischbein et al. (1985) illustrate how implicitly-held models of multiplication 
and division lead to cognitive conflict with formal algorithmic structures. They assert that 
“people naturally tend to interpret facts and ideas in terms of structured models that are 
behaviorally and enactively meaningful” (p. 15).  For example, the primitive model for 
multiplication is repeated addition.  

In its basic form, a multiplication/division situation can be regarded from the 
perspective of a relation, mathematically equivalent to 321 aaa =× , where 1a , 2a , and 3a are 

either integers, rational or real numbers. If, for instance, 2a  is unknown, one has to 

coordinate the known quantities 1a and 3a  to determine 2a . Among others, the context and 

numeric features of a problem determines how such a multiplicative relation is established 
by the problem solver.  In a previous study (Ramful & Olive, 2008), I analysed how two 
middle-school students articulate the multiplicative relation 2211 dwdw =  in a balance beam 

context (where 121 ,, dww  and 2d  represent the weights and distances on the two sides of the 

fulcrum). In the present study I analyse the multiplicative relation LnSn Ls = when two gears 

turn synchronously (where S, L, sn , and Ln represent the number of teeth and number of 

turns of the two gear wheels). The main aim of this study was to understand how problem 
conceptualization enables or constrains students in reasoning multiplicatively. In that sense, 
I looked for those critical knowledge elements which opened solution paths or which 
hindered students from coordinating the quantities. I referred to the literature on 
multiplication/division, fraction, ratio, and proportion to identify those constraints that have 
been shown to affect students’ ability to work with multiplicative structures. Vergnaud 
(1988) points out that: 
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the complexity of problems depends on the structure of the problem, on the context domain, on the 
numerical characteristics of the data, and on the presentation; but the meaning and the weight of these 
factors depend heavily on the cognitive level of the students. (p. 143) 

Along the same lines, Kaput & West (1994) point out that there are four broad 
categories of task variables to take into account in problem solving situations: semantic 
structure, numerical structure, tools and representation, and the forms of the text. Fischbein 
et al. (1985) also list a similar set of factors: familiarity of context, quantities involved, size 
and type of numbers involved, relation between the situation referred to and the appropriate 
operation, rigidity effects associated with specific operations and intuitive intervening 
models.  They found that the numerical features (e.g. decimals and size of operator and 
operand) of the data in a problem determined the choice of arithmetic operation as being 
either multiplication or division. Further, they argue that such intuitive models may often 
“slow down, divert or even block the solution process when contradictions emerge between 
the model and the solution algorithm” (p. 14). In addition, Harel, Post, & Behr (1988) 
showed that changing a divisor from an integer to a decimal may lead respondents to 
different interpretations of the same problem. 

Theoretical Framework  

To understand how the participants in this study conceptualized the problem situations, I 
used Vergnaud’s (1988) idea of concepts-in-action and theorems-in-action. Vergnaud’s 
theory provides a theoretical framework that permits the articulation between the 
mathematical problems to be solved, knowledge deployed, schemes, concepts and symbols 
involved in the solution procedure. Mathematical concepts exist in relation to each other and 
draw their meaning from a variety of situations. To analyze the complexity of the 
interrelatedness of concepts, Vergnaud (1988) introduced the theory of conceptual fields. He 
defines a conceptual field as “a set of situations, the mastering of which requires the mastery 
of several concepts of different natures” (p. 141). He considers the conceptual field of 
multiplicative structures as “all situations that can be analyzed as simple and multiple 
proportion problems and for which one usually needs to multiply and divide” (p. 141).  This 
field can be regarded as consisting of a range of concepts and operations including 
multiplication, division, fraction, ratios, proportions which are referred as concepts-in-
action. Apart from mathematical concepts, it also encompasses students’ ideas (both 
competencies and misunderstanding), “procedures, problems, representations, objects, 
properties, and relationships that cannot be studied in isolation” (Lamon, 2007, p. 642). 
Vergnaud characterizes students’ reasoning by symbolizing the different ways in which they 
articulate mathematical relations. He defines Theorems-in-action as the “mathematical 
relationships that are taken into account by students when they choose an operation or a 
sequence of operations to solve a problem” (1988, p. 144). Theorems-in-action are held to 
be true propositions and may even be flawed. They provide behavioral evidence of the 
mathematical relations that students may be using. The same mathematical relation may be 
interpreted through various theorems-in-action. Moreover, the term affordance is 
conventionally referred to the action potential (Bower, 2008) of an ICT-mediated 
environment. I use the term affordance to refer to a representation of a theorem-in-action 
that opens solution paths in the course of mathematical problem solving.  

The Multiplicative Context: The Gear-Wheel Problem 
I chose the gear-wheel problem (Lamon, 1999) as a multiplicative context to identify the 

concepts- and theorems-in-action that the four participants deployed as well as the conflicts 
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that they encountered. Essentially, this problem consists of coordinating the number of teeth 
(S and L) and turns (

 

ns and 

 

nL ) as two gears with different number of teeth turn 
synchronously. This problem shares three features that make it suitable for studying 
multiplicative reasoning. Firstly, this multiplicative comparison situation is complex enough 
to probe students’ thinking as it requires the coordination of 4 variables (S, L, 

 

ns, 

 

nL ) which 
are in multiplicative relation, i.e., the four variables are related in terms of proportion and 
not additively. Secondly, it involves an inverse proportion relation between the number of 
teeth and the number of turns as can be inferred from LnSn Ls =  or SLnn Ls // =  or 

SLnn Ls :: = . Thirdly, it can be solved in a number of ways and offers possibilities to 

identify different theorems-in-action. In fact, the relation,  LnSn Ls =  may be interpreted in 

a myriad of ways (e.g., SLnn Ls // = , SnLn Ls /)( ×= , Ls nSLn ×= )/(  or in terms of a ratio 

or proportion), all of which are mathematically equivalent but not necessarily operationally 
from the perspective of mental processes. Further, the numeric feature of the problem 
parameters may allow other creative strategies, as the data in this study show.  

 Method 

Data were collected from two pairs of students at grades 7 and 8 in an urban middle 
school. The grade 7 students (Aileen and Brian) were interviewed in May 2008 and January 
2009 while it was only possible to interview the grade 8 students (Jeff and Eric) in May 
2008. In some cases, observing the constraints that the students encountered, I interviewed 
them on the same task on two different days. In the initial phase of the clinical interview 
(Ginsburg, 1997) , I asked them to determine the number of turns that the small gear makes 
when the large gear makes only one turn and vice-versa (Table 1). 

Table 1  
Structure of Problems (S and L: number of teeth; sn  and Ln : number of turns) 

Problem Structure Problem Structure 

1 ?   1,   10,    5, ==== Ls nnLS  7 
3
1  1  4,    ?,   8, ==== Ls nnLS  

 1   ?,   10,    5, ==== Ls nnLS  8 ?  5,    11,   8, ==== Ls nnLS  
2 ?   1,   11,    8, ==== Ls nnLS  9 

3
1  1  4,    ?,   8, ==== Ls nnLS  

 1   ?,   11,    8, ==== Ls nnLS  10 4  ,5    11,   ?, 2
1 ==== Ls nnLS  

3 1  3,   ?,   6, ==== Ls nnLS  11 2  1,    ?,   ?, ==== Ls nnLS  
4 1  , 1    24,   ?, 2

1 ==== Ls nnLS  12 1  ,1    ?,   ?, 2
1 ==== Ls nnLS  

5 1  , 1    36,   ?, 2
1 ==== Ls nnLS  13 

4
1

4
3 1  ,2    ?,   ?, ==== Ls nnLS  

6 1  , 1    20,   ?, 4
1 ==== Ls nnLS    

Gradually, the number of turns and teeth were increased and they were asked to 
coordinate the four parameters in the problem. I encouraged them to work in pairs and 
allowed them to solve the problem to the point where they were satisfied with their answer. 
I kept their written work as a trace of their thinking moment-by-moment. I used two video 
cameras so as to produce a restored view (Hall, 2000). In problems 3 to 10, three parameters 
were specified and the students had to determine the fourth unknown parameter by 
articulating the multiplicative relation. Problems 11 to 13 involved the determination of two 
unknowns, S and L, starting from two known quantities ( sn  and Ln ). 
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Results and Discussion  

The four students differed in the ways in which they conceptualized and coordinated the 
number of teeth and number of turns in the gear-wheel problem. I characterize the way in 
which they conceptualized the problem in terms of the concepts- and theorems-in-action 
that they used consistently in Tables 2 and 3.  

Table 2  
Problem Conceptualisation by the 7th Graders  

 Concept-in-action  Theorem-in-action 

Aileen She interpreted the 
number of teeth and 
number of turns in terms 
of two ratios (represented 
in the form of a 
proportion template). In 
each of the different 
situations she generated 
two ratios, one for the 
number of turns and one 
for the number of teeth. 

Problem   

4 

  

Problem 

8 

 

She subtracted 8
3  

from the 5 turns, 
compensating 
additively rather 
than 
multiplicatively 

Problem 

9  

Problem 

10 

 

Brian He interpreted the 
problem as multiplication 
and division situation, 
and did not explicitly 
wrote a ratio to 
coordinate the quantities 
unlike his interviewer 
partner Aileen. He 
focused primarily on 
number of turns. 

 

Problem 

4 

He interpreted 2
11  as 3 units of 2

1  and 

constructed one whole as 3
2  of 2

11 , i.e., 3
2  

of 24. 

Problem 

8 

He multiplied 51 8
3 ×  which represents the 

number of turns that the small gear makes 
when the large gear makes 5 turns.  He did 
not consider the inverse proportional 
relation.  

Problem 

9 

He multiplied 84×  (i.e., 32) by 3
11  to 

obtain 3
242  operating 3

11  on the known 

quantity rather than the unknown  quantity . 
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Problem 

10 

He gave the following answer: “It will be 44 
instead because this go by 4 turns. It started at 
11, 11 times 4 is 44. So, if one has 44, this thing 
is going  all around once. Then the other one 
have to have 5.5 times ... “  and he did not 
proceed further. 

Table 3  

Problem Conceptualisation by the 8th Graders  

Student Concept-in-action                   Theorem-in-action 

Jeff He interpreted most of the 
problem as a 
multiplication and 
division situation and 
focused on number of 
teeth to solve the 
problem. 

Problem 
4 

S

L

n
nLS ×

=  

Problem 
8 L

nSn S
L

×
=  

Problem 
9 

He changed his consistent strategy 
from working with the number of teeth 
to the number of turns ( 4=sn  and 

3
4=Ln ) due to the divisibility 

relationship between 4 and 3
4 .  

Problem 
10 

S

L

n
nLS ×

:  

Eric He interpreted the 
problem as a 
multiplication and 
division situation and was 
occasionally constrained 
by problem context. 

Problem 

4 

He gave the following justification: 
“Well, I did, I made 24, I made it into a 
fraction. I did 24 over 1 divided by 3 
over 2 which is the same as 1.5. And I 
got 8 over 2 which is equal to 4” 

 

Problem 

8 

In the first interview, his response 
suggests that he had no clear idea what 
he was doing. In the second interview, 
he multiplied 8

31 by 5 to obtain 8
55  or 

8
76  where he worked with the number 

of turns.  
Problem 

9 

He did not contribute much in the first 
interview. In second interview, the 3

1  

in 3
11  prompted Eric to divide 32 by 3.  

Problem 
10 

Following Jeff’s lead, he attempted to 
divide 44 by 5.5. 
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While Jeff chose to work with the number of teeth, Aileen and Brian preferred to work 
with the number of turns and these called for different conceptualizations of the same 
situation. For instance, in problem 8 working with number of turns called for the theorem-
in-action 5)(11

8 ×  while working with the number of teeth prompted Jeff to use the theorem-

in-action  11
58× . Such differential conceptualizations generated different forms of conflict. 

Further, I captured the intuitive knowledge elements they deployed in their attempt to 
conceptualize the problems to open solution paths. For example, in problem 2, before the 
computation, Eric deduced that the small gear should make less than two turns: “Because I 
know the little gear had to at least make one turn but it wouldn't be like 2 complete turns.” 
In problem 10, rather than dividing 44 by 5.5, Eric’s strategy was to find x such that 5.5 
multiplied by x gives 44. Instead of doing division involving decimals (5.5), he preferred to 
plug in numbers to find which number times 5.5 gives 44. 

Constraint 1: Determination of the Unknown Quantity 
The gear-wheel problem requires the coordination of known and unknown quantities in 

the multiplicative relation LnSn Ls = . In some instances, the participants operated the given 

fraction on the known rather than the unknown. For example, in problem 9, Brian computed 

3
11  of 32 rather than interpreting 3

11  of the unknown as being 32. It could also be observed 

that often the participants used the denominator of the given fractions as a pointer to 
determine the unknown quantity. For instance, in problem 4, Aileen used the fraction 2

1  in 

2
11 as a pointer to divide 24 by 2. 

Constraint 2: The Inverse Proportional Relation between Number of Teeth and 
Turns 

The conflict arising as a result of the inverse proportion between the number of turns 
and teeth could be observed at different instances of the interviews. Aileen and Brian (the 
seventh graders) and Eric (the eighth grader) encountered the same conflict in problem 6 
( 5811 ×=x ). They all multiplied 8

31  by 5 instead of multiplying 11
8  by 5. They did not take 

the inverse proportional relationship between number of teeth and turns into consideration at 
that instant This inverse proportional relation is analogous to measurement situations where 
the larger the size of the unit, the smaller the measure.  

Constraint 3: Numeric Features of the Data 
All four participants spontaneously solved problem 3, involving an integer ratio of turns 

(i.e., 1:3: =Ls nn ). However, Aileen, Brian and Eric were constrained to articulate the 

multiplicative relation in the other problems due to the non-integer ratio. The data show that 
students’ capability to coordinate the known and unknown quantities in a multiplicative 
situation (mathematically equivalent to 321 aaa =× ) is sensitive to the numeric feature of the 

data. When 1a and 3a  are factors/multiples of the other, the students could readily find 2a , as 

could be observed in problem 3. However, when mixed numbers or improper fractions were 
involved the students experienced much difficulty. Consequently, estimation strategies were 
used to determine the unknown in the multiplicative relation. As highlighted in the review 
of the literature, Kaput & West (1994), Fischbein et al. (1985) and Vergnaud (1988) also 
reported such influence of numerical characteristics of problem parameters on students’ 
ability to solve problems.   
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One may solve problem 8 using either number of turns in which case we use the ratio of 
turns that the small and large gear makes i.e., 11

8:1  (involving the multiplicative comparison 

of fractional quantities) or in terms of ratio of teeth 8 : 11 (involving the multiplicative 
comparison of integer quantities). Jeff solved the problem using the number of teeth and as 
such worked with integer quantities. On the other hand, Aileen and Brian worked with the 
number of turns and encountered much difficulty in finding Ln . As is generally the case, 
problems involving fractional quantities are more demanding than those involving integer 
quantities. In addition, this study shows that even within fractional quantities the form of the 
number representation may influence problem solving behavior.  The ‘improper fraction’ 
and ‘mixed number’ interpretation of rational numbers may offer different routes to solve 
the same problems. For instance, we observed that the same rational number 3

11 and 3
4 cued 

different resources in problem 7, where the representation 3
4  (interpreted as 4 thirds) 

allowed Jeff to observe the proportional relationship between 4 and 3
4  to reverse his thought 

process.  

In summary, this study shows that the four students solved the same problem using 
different strategies, deploying different resources and experienced different forms of 
conflict depending on the knowledge elements available to them at that point in time. The 
gear-wheel problem was conceptualized as a multiplicative comparison situation and as a 
ratio/proportion. However, they articulated these multiplicative relations with varying level 
of facility. The students were at different points in their development of multiplicative 
reasoning. On a continuum, I would consider Eric and Jeff at the two extremes, with Jeff at 
the upper end and Aileen and Brian in between. Neither  Jeff nor Eric felt the necessity to 
use a proportion schema like Aileen. However, although she had the proportional schema, 
she was at times limited in using it. One of the fallback strategies that was observed is that 
students tend to make intuitive attempts, leaving behind mathematical principles in their 
attempt to solve problems. For example, in problem 8, to find x in her proportional schema 

8
31:1  and 5:x , Aileen subtracted 8

3  from 5, thereby compensating additively rather than 

multiplicatively. An important observation from this study is that divisibility relationship 
among problem parameters is a critical factor that influences problem conceptualization.  

In terms of instructional implications, this study suggests that middle-school students 
need to be given purposeful tasks to work with non-integer ratios and to work 
interchangeably between ratios and fractions.  Similarly, such students need to be given 
opportunities to work with fractional units e.g., interpreting 2

11  as 3 units of 2
1 . More 

importantly, multiplicative comparison which lies at the basis of ratio and proportion 
situations, should be fostered especially in terms of fractional quantities.   
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One of the common tasks of inferential statistics is to compare two data sets. Long before 
formal statistical procedures, however, students can be encouraged to make comparisons 
between data sets and therefore build up intuitive statistical reasoning. Such tasks also give 
meaning to the data collection students may do. This study describes the answers given by 
beginning university students to tasks involving comparing data sets in graphical form, 
originally designed for students between Grades 3 to 9. The results show that whereas all the 
students had successfully completed either pre-tertiary mathematics or a bridging 
mathematics course many had similar difficulties to students of a younger age. In particular, 
they did not use a measure of centre or proportional reasoning when appropriate.  

One of the common tasks in inferential statistics is to compare two data sets. For 
example, is one group faster than the other group? Does the new drug work better? In the 
formal procedures of inferential statistics, questions similar to these are often answered by 
comparing the values of the arithmetic mean of each group while taking into account the 
value of the standard deviation of each group. 

Using less formal means of making comparisons, however, students can compare two 
data sets by using a measure of centre such as the arithmetic mean or by using proportional 
reasoning. For students to use a measure of centre they need to know that this statistic is 
somehow representative of a group (Gal, Rothschild, & Wagner, 1990). Despite the wide 
spread use of the arithmetic mean (the average) in everyday applications, previous research 
has shown that students often only perceive the arithmetic mean as the learned algorithm. 
Because these students do not regard the arithmetic mean as a representative number they 
are generally unsuccessful in using it to make decisions about data (Mokros & Russell, 
1995).  

Gal, Rothschild, and Wagner (1989) investigated how primary students (Grades 3 and 6) 
compare two data sets. They found that most of the students in Grade 6 did not use the 
arithmetic mean in their solutions, even though they were familiar with its calculation. 
Many of the students used totals even when the data sets were not of equal size. They also 
found that many of the students in Grade 6 had difficulty in using proportional reasoning. In 
a later study Gal, Rothschild, and Wagner (1990) found that as students became older their 
understanding of the characteristics of the arithmetic mean improved but there was still a 
reluctance to use it as a tool to distinguish between two data sets. Whereas the formula for 
calculating the arithmetic mean was familiar to 2% of Grade 3, 61% of Grade 6, and 91% of 
Grade 9 students, the algorithm was applied by only 4%, 14% and 48% of the students 
respectively. They also did not generally use proportional reasoning or visual comparisons 
of the given graphical displays to reach their conclusions. Watson and Moritz (1998) also 
investigated students’ thinking in comparing two data sets. In their study, 88 students from 
Grades 3 to 9 were given a series of tasks that required them to make comparisons between 
two data sets given in graphical form. Many of the students did not use the arithmetic mean 
in their conclusions, and those who did (10% of the Grade 6 students and 54% of the Grade 
9 students) did not always do so successfully.  

Another strategy in such tasks is to use proportional reasoning, which is valid when the 
groups are not of equal size. Proportional reasoning involves multiplicative reasoning 
instead of additive reasoning. For example, in answer to the question, “If green paint is 
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