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"For a person with a hammer, everything looks like a nail" is a proverb that can be used to
highlight the phenomenon that students tend to rely on familiar ideas as opposed to taking
time to think about and analyse a problem. Presented in this theoretical paper is the
usefulness of the hammer-and-nail metaphor, other related theoretical constructs,
pedagogical causes of student impulsive behaviours, and pedagogical suggestions for
addressing them.

The behaviour of “doing whatever first comes to mind ... or diving into the first
approach that comes to mind” (Watson & Mason, 2007, p. 307) is quite common among
students when solving problems in mathematics. Consider, for example, a 9" grader’s
response to the task of finding the value of b that would make the equation (b — 1)(b + 4) =
0 true. As shown in Figure 1, the student multiplied out the given factors and then re-
factored the quadratic equation before using the zero-product property. This student’s
behaviour is reminiscent of an English proverb: For a person with a hammer, everything
looks like a nail. Metaphorically, the student saw the factored-form equation as a “nail” that
compelled him to use the multiplying-out-factors algorithm, commonly known as FOIL, as
a “hammer” to obtain the general form.
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Figure 1. A 9" grader’s solution

This hammer-and-nail proverb can be used as a means to draw educators’ attention to
this phenomenon. In this paper, the following aspects of the hammer-and-nail metaphor are
discussed: (a) its origin and its usefulness, (b) its manifestations among learners of
mathematics, (c) related literature, (d) pedagogical causes, and (e) suggestions for teaching.

Origin and Usefulness of the Hammer-and-Nail Metaphor

The hammer-and-nail metaphor was first utilised in the context of conducting scientific
research in the 1960’s. Maslow (1966) acknowledged that “it is tempting, if the only tool
you have is a hammer, to treat everything as if it were a nail” (p. 15-16). He distinguished
between two types of researchers: problem-centring scientists who “choose to work as best
they can with important problems” and method-centring scientists who restrict “themselves
to doing only that which they can do elegantly with the techniques already available” (p.
16). Kaplan (1964) coined the phrase the law of the instrument to refer to the individual
scientists’ tendency to formulate a problem according to her or his expertise.
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Exposing the hammer-and-nail disposition can help researchers become aware of their
tendency to be confined by the theoretical perspectives and methods they are most familiar
with. In the context of solving mathematics problems, making the hammer-and-nail
phenomenon explicit can help teachers and students become aware of their tendency to rely
on algorithms they know as opposed to taking time to think and analyse a problem.

The author used the hammer-and-nail phenomenon as a metaphor to describe students’
impulsivity in their problem solving at several professional development workshops for
mathematics teachers. The participants generally related very well to this metaphor,
especially when they experienced their own impulsivity through solving certain problems in
a non-threatening environment. Several presentations on the hammer-and-nail phenomenon
have been given at mathematics teacher conferences and have been well received by the
audience.

Manifestations of Hammer-and-Nail Behaviours in Mathematics

The hammer-and-nail phenomenon is noticeable when an error is observed to arise from
inappropriately applying a mathematical tool (hammer) to solve a mathematical problem
(nail). Tools that are commonly used by students include formulas (e.g. quadratic formula),
algorithms (e.g., setting up a proportion), strategies (e.g., identifying key words), and
intuitions (e.g., multiplication makes bigger).

Treating formulas as “hammers” is common among students, especially when their
understanding is superficial. For example, 52% of 307 pre-service K-8 teachers selected “d”
as the answer for the question shown in Figure 2. These students interpreted the item as a
speed problem (nail), read the distance from the graph (3000m) that corresponds to the 20
minutes, applied the s = d/t formula (hammer), and obtained 150 by dividing 3000 by 20.
Only 18% selected the correct answer “b” which is based on understanding speed as ratio of
change in distance to change in time. Interestingly, 28% interpreted this task (nail) as a
graph-reading activity (hammer) and chose 3000 meters as the answer.

. Gina is traveling home from her friend’s house. The graph represents a portion of Gina’s journey.
What is Gina’s speed at the 20" minute?
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(a) Approximately 3000 meters
(b) Approximately 50 meters/min
(c) Approximately 80 meters/min
(d) Approximately 150 meters/min
Answer: A B C/ (D

Figure 2. An inappropriate use of s = d/t formula to find speed

Student overgeneralization of proportionality in solving non-proportional missing-value
problems can be interpreted as instantiations of the hammer-and-nail phenomenon. For
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example, 72.1% of Flemish fifth-graders applied a proportional strategy (hammer) to solve
the following missing-value problem (nail): “A group of 5 musicians plays a piece of music
in 10 minutes. Another group of 35 musicians will play the same piece of music. How long
will it take this group to play it?” (Van Dooren, De Bock, Hessels, Janssens, & Vershaffel,
2004a, p. 390). The inappropriate use of proportional methods is found to be most
prominent in Grade 5 where students in Belgium are taught extensively to reason
proportionally. This overgeneralization is also common among pre-service teachers
(Cramer, Post, & Currier, 1993; Lim, 2009; Monteiro, 2003).

The phenomenon of indiscriminately applying proportional strategies was observed in
an exploratory study involving pre-service elementary and middle school teachers in a
course on rational numbers and algebraic reasoning. After being taught ratios and
proportions, these prospective teachers performed worse on all three non-proportional items
in a post-test but performed better on all four direct-proportional items. A direct-
proportional item and an inverse-proportional item are shown in 3a and 3b, respectively. We
found that (a) the number of students who chose the correct answer “b” for the direct-
proportional item increased from 64% to 78% (n = 118); (b) the number of students who
chose the correct answer “a” for the inverse-proportional item, on the other hand, dropped
from 55% to 42%; and (c) the number of students who chose the incorrect proportional
answer “d” increased from 24% to 40%. These results suggest that when students are
exposed to a particular solution strategy (hammer), they are more likely to use it even for
situations where its use is inappropriate.

Direct-Proportional Item Inverse-Proportional Item
The ratio of the amount of soda in the can to The ratio of the volume of a small glass to the
the amount of soda in the bottle is 4:3. There volume of a large glass is 3:5. If it takes 15
are 12 fluid ounces of soda in the can, how small glasses to fill the container, how many
many fluid ounces of soda are in the bottle? large glasses does it take to fill the container?
() 9 fluid ounces (3) 9 glasses @
(b) 11 fluid ounces (b) 13 glasses
(c) 15 fluid ounces S (c) 17 glasses Small
(d) 16 fluid ounces (d) 25 glasses
(e) None of the above (e) None of the above

Can Bottle Large Container

Figure 3. Two math test items used in a pilot study

In this paper, students’ mistakes due to their familiarity with a particular idea or schema
are considered manifestations of the hammer-and-nail phenomenon. It is important to note
that the hammer-and-nail metaphor is just one of many viable ways of interpreting a
situation. Other related perspectives are presented in the ensuing section.

Related Literature

Einstellung Effect. Students’ tendency to approach a problem with conceptual tools that
are familiar to them has been noted in the literature since the 1940s. In the famous water jar
experiment (Luchins & Luchins, cited in NRC, 2000), after solving many problems using
one approach subjects spontaneously used that approach to solve other problems that could
have been more easily solved using a different approach. This phenomenon of solving a

451



given problem in a fixated manner even when a better approach exists is called the
Einstellung effect.

Spurious Correlation. In mathematics, student hammer-and-nail behaviours can be
explained in terms of Ben-Zeev and Star’s (2001) spurious correlation, which is a two-
phase process consisting of: (a) conceiving an association between a problem feature and an
algorithm for solving the problem, and (b) using the algorithm upon perceiving the same
feature in another problem. In their study, students not only relied on surface-level features
in solving problems but “also generate[d] and use[d] correlations between irrelevant
surface-level features and solution strategies” (p. 272). Experienced students were also
found to be susceptible to this tendency. Although the Einstellung effect is the scientific
term for this phenomenon, the hammer-and-nail metaphor is less technical and more
relatable to mathematics teachers.

Intuitive Rule. Tirosh and Stavy (1999) put forth a set of intuitive rules to account for
many alternative conceptions in mathematics and science. For example, students who
thought that the heavier the object the faster it falls are said to have relied on the “more A —
more B” intuitive rule. Metaphorically, intuitive rules are the hammers that tend to influence
students to perceive certain situations as nails.

Dual-System Theories. Several researchers in cognitive psychology have posited that
there are two distinct cognitive systems of reasoning. Various names have been used to
distinguish the two systems: implicit-explicit (Reber, 1993), associative and rule-based
(Sloman, 1996), and System 1 and System 2 (Stanovich & West, 2000). According to Evans
(2006), “System 1 processes are rapid, parallel and automatic in nature: only their final
product is posted in consciousness” whereas “System 2 thinking is slow and sequential in
nature and makes use of the central working memory system” (p. 454). Sloman (1996)
points out that the two systems often work cooperatively despite having different goals and
specializing in different kinds of tasks. At times, they may each try to generate a response.
Although System 1 may have its response overridden by System 2, it “always has its
opinion heard, and because of its speed and efficiency, often precedes and thus neutralizes
the [System 2] response” (p. 15). Manifestations of the hammer-and-nail phenomenon may
be attributed to the domination of System 1 over System 2.

Cognitive Tempo. On an individual-basis level, some students are more likely exhibit
impulsive behaviours than other students. Such impulsivity can be considered a cognitive
style—"a person’s typical or habitual mode of problem solving, thinking, perceiving and
remembering” (Riding & Indra, 1991, p. 194). In the field of psychology, the term
conceptual tempo refers to a cognitive style that is along the impulsivity-reflectivity
dimension (Kagan, 1965). Kagan, Rosman, Day, Albert, and Phillips (1964) constructed the
Matching Familiar Figures Test to measure children’s cognitive tempo. They classified a
child who had an above-the-median response time and a below-the-median accuracy rate as
having an impulsive style, and a child with a below-the-median response time and above-
the-median accuracy rate as having a reflective style. Nietfeld and Bosma (2003) describe
impulsives as “individuals who act without much forethought, are spontaneous, and take
more risks in everyday activities” (p. 119) and reflectives as “more cautious, intent upon
correctness or accuracy, and [who] take more time to ponder situations” (p. 119). Students
classified as having an impulsive cognitive tempo are considered more likely to exhibit
behaviours that are reminiscent of the hammer-and-nail phenomenon.

Impulsive Disposition. Lim, Morera, and Tchoshanov (2009) use the term impulsive
disposition to refer to a tendency to proceed with an action that comes to mind without
analysing the problem situation and without considering the relevance of the anticipated
action to the problem situation. Impulsive disposition differs from impulsive tempo in that
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the latter is characterized by a fast but inaccurate response whereas the former is
characterized by proceeding with an approach that comes to mind without checking its
relevance, and not necessarily by how fast an approach comes to mind. Another difference
is that impulsive tempo is a cognitive style that is rather stable across time and across
situations (Messer & Brodzinsky, 1981), whereas impulsive disposition is a cognitive
tendency which depending upon the circumstances may or may not result in an action.
Impulsive disposition alludes to a mental tendency that can be modified under favourable
learning conditions. In terms of the hammer-and-nail metaphor, students can learn to
recognize situations where a particular idea is inappropriate from those where it is.

Knowing-to-Act in the Moment. Spontaneously responding to a situation with the first
thing that comes to mind is not necessarily an undesirable way of thinking. Mathematicians
often respond automatically to situations with which they are familiar. Mason and Spence
(1999) describe this ability as knowing-to act in the moment. A person with this ability in
relation to a particular tool is considered to have mastered the use of the tool, knows when
not to use it, and consequently is able to avoid hammer-and-nail behaviours.

Pedagogical Causes of Hammer-and-Nail Behaviours

The traditional methods of teaching mathematics tend to foster hammer-and-nail
behaviours. “The tradition has been to regard ‘mathematics’ as a set of rules for writing
symbols on paper, and to regard the ‘teaching’ of mathematics as merely a matter of
‘telling’ students what to write and where to write it, together with supervising some
considerable amount of drill and practice” (Davis, 1989, p. 159). Stigler and Hiebert (1999)
characterized U.S. teaching as “learning terms and practicing procedures”, as opposed to
“structured problem solving” (p. 27) in Japanese teaching. More than three-fifths of U.S.
teachers described skills as the main thing that they wanted their students to learn; “they
wanted the students to be able to perform a procedure, solve a particular kind of problem,
and so on” (p. 89). Drill and practice of procedures without a conceptual focus will lead to
superficial understanding and foster the System 1 mode of operation.

Mathematics curricula are typically organized sequentially, one chapter after another.
Textbook problems are designed for students to practice the main ideas in a chapter. Such
problems can be regarded as “nails” for students to practice with their newly acquired
“hammer”. To help students remember certain facts or procedures, some teachers offer
students learning aids such as acronyms (e.g., FOIL), schematic tools (e.g., ratio box to find
the missing value from three given values), and key words (e.g., altogether means add and
share means divide). Students typically learn such strategies by associating a feature with a
procedure; these associations constitute the bases for hammer-and-nail behaviours. For
example, problems that begin with “In a sports car race” tend to cue formulas such as s = d/t
or d = rt (Hinsley, Hayes, and Simon, 1977). Such strategies suppress System 2 mode of
reasoning because students are relieved from having to grapple with the mathematics they
learn and from having to make sense of the problems they try to solve.

Suggestions for Addressing Hammer-and-Nail Behaviours

Addressing the hammer-and-nail phenomenon involves helping students develop a
cognitive habit of maintaining control over their own mathematical thinking as they solve
problems or learn mathematics. To be in control of a situation a student needs to: (a) be
aware of his or her impulsive disposition, (b) stop relying solely on instrumental
understanding—*“rules without reason” (Skemp, 1976, p. 20), and (c) develop relational
understanding—*“knowing what to do and why” (p. 20). To help students become cognizant
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of their impulsive tendency, superficially-similar-but-structurally-different problems should
be used intermittently in class as well as in examinations. To help students overcome their
reliance on instrumental understanding, reasoning and sense making such as attendance to
meaning of mathematical symbols (Harel, Fuller, & Rabin, 2009) should be emphasized in
class. These instructional strategies were used in a study (Lim & Morera, 2010) that was
conducted to explore the possibility of helping prospective K-8 teachers overcome their
overgeneralization of proportionality within one semester.

Using Superficially-Similar-but-Structurally-Different Problems. After learning how to
solve certain problems using a particular idea, students can work on a superficially-similar-
but-structurally-different problem that can elicit a conceptual error and thereby allow
students to realize the harmfulness of indiscriminately applying a newly learned idea. For
example, when students have learned the use of ratio for comparing measures such as
steepness of a line or “squareness” of a rectangle, the problem in Figure 4 can be posed.
This problem offers students an opportunity to make a mistake, learn from their mistake,
and become cognizant of their impulsive tendency. When used as classroom activities,
superficially-similar-but-structurally-different problems allow teachers to emphasize
quantitative reasoning, to foster attendance to meaning, and to extend student understanding
by knowing when an idea is not applicable.

Given the value of the perimeter and the length of each rcctanglé, determine -which r;:ctangle has the

greatest width,
_ Rectangle A Rectangle B Rectangle C
Perimeter 18 meters 28 meters 44 meters
Length 6 meters 10 meters 20 meters
/8: 6 2% 110 yy . 20
3?51 2,8 7 | 2.4

YectanglLe Ko
Figure 4. A pre-service teacher’s incorrect use of ratio to compare widths of rectangles

Emphasizing Reasoning and Sense Making. Awareness of one’s impulsivity is useful
but is not sufficient to ensure a correct solution: one needs to analyse and visualize the
problem situation. For example, in solving a word problem, one needs to make sense of the
problem by focusing on quantities—attributes that can be measured or amounts that can be
counted—and understanding how those quantities are related, instead of identifying
numbers and deciding which operations to use on those numbers. Thompson (1993) defines
quantitative reasoning as “the analysis of a situation into a quantitative structure—a
network of quantities and relationships” (p. 165). One way to foster quantitative reasoning is
to challenge students to explain the quantitative structure underlying a problem situation.
For example, when students set up a proportion a/b = c/x to solve a missing-value problem
(values of three quantities are given to find the value of the fourth quantity), they should
provide “reasons in support of claims made about the structural relationships among four
quantities” (Lamon, 2007, p. 638). Lim (2009) used non-proportional situations, in the
context of burning candles, to emphasize the importance of analysing the problem situation,
determining the co-varying quantities, and identifying the invariant relationship. The
quantities depicted in a non-proportional missing-value problem may be related by an
invariant difference (a — b = ¢ — x), an invariant sum (a + b = ¢ + x), or an invariant product
(ab =cx).
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Fostering Attendance to Meaning. The hammer-and-nail phenomenon is more likely to
manifest among students with superficial understanding. For example, students might use a
proportion, a/b = c/x, to solve a missing-value problem without knowing what in the context
of the problem situation each ratio refers to and why the two ratios should be equal to each
other. Such students are said to be reasoning in a non-referential symbolic manner—
“operating on symbols as if they possess a life of their own” (Harel, Fuller, & Rabin, 20009,
p. 2008). This way of thinking often leads to errors. It is therefore important for students to
attend to the meanings of the symbols and numbers they encounter in a problem. To foster
attendance to meaning in the context of proportional reasoning, students should be
challenged to explain what the ratio a/b represents in the context of the problem situation
and why it should be equal to the other ratio, c/x. When students develop the habit of
attending to meaning, they are more likely to engage in quantitative reasoning and less
likely to respond to a problem impulsively.

Concluding Remarks

This paper uses the hammer-and-nail metaphor to highlight the rigidity and
impulsiveness that can be found in student mathematical behaviour. The hammer-and-nail
phenomenon can be attributed to two plausible causes: the way the human mind works and
the way mathematics is traditionally taught in school. To deal with the first factor, we can
help students become cognizant of their own impulsive tendency, be more metacognitive,
and develop the habit of utilizing System 2 instead of simply letting System 1 dominate. To
address the second factor, classroom instruction and assessments should place greater
emphasis on relational understanding, analysing, sense-making, and attending to meaning of
symbols.

The hammer-and-nail phenomenon deserves the attention of the mathematics education
community because it reminds teachers that many students are learning mathematics
without engaging in mathematical reasoning and sense making. Awareness of this
phenomenon can also help teachers become more sensitive of their own teaching so as to
not foster students’ impulsive tendencies. Teacher educators can use the hammer-and-nail
phenomenon to highlight the futility of instrumental understanding and to motivate teachers
to teach in a manner that fosters relational understanding and analytical reasoning.
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