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We investigate the viability of a new approach to initial fraction instruction. We establish the 
need to empirically investigate whether the proposed approach shares the strengths of 
currently used approaches, specifically, whether students will (a) construe problems based 
on the proposed approach as experientially real, and (b) bring up ideas that could be build 
upon in subsequent fraction instruction. We then present an analysis of sixteen student 
interviews from a school in southern Mexico (ages 8 and 9). The analysis supports the 
conjecture that the proposed approach to initial fraction instruction can be viable, and thus 
warrants further research attention.  

Introduction 

In this paper, we build on Freudenthal’s (1983) analysis of the fraction concept to 
propose what we came to view as a viable alternative starting point for fraction instruction. 
The alternative consists of regarding comparing, instead of fracturing, as the primary 
activity from which students are expected to make sense of fractions. It involves using, from 
the start, problems aimed at orienting students to reason about unit fractions as quantities 
that account for the relative size of magnitude values,1 rather than for the size of pieces 
generated by equally partitioning a food item such as a cake, a candy-bar, a pizza, or a loaf 
of bread. An example of the problems that, we argue, represent the alternative starting point, 
orients students to reason about how much milk a cup holds, if so many cups of the same 
capacity would hold as much milk as a milk carton.  

Theoretical Framing 

Starting Point for Instruction 

Our perspective on instructional design builds on the RME theory (e.g., Gravemeijer, 
1994). Central to our perspective is the construct of hypothetical learning trajectory (HLT). 
An important step in formulating a HLT involves choosing a viable starting point for 
instruction. Such a starting point consists of problems that have the potential of fulfilling 
three characteristics: (a) become experientially real to students, (b) trigger informal ways of 
reasoning that can be a basis for developing increasingly sophisticated mathematical ways 
of knowing, and (c) serve as paradigmatic cases in which to “anchor students’ increasingly 
abstract mathematical activity” (Cobb, et al., 1997, p. 159). We use these characteristics as a 
lens to examine two approaches for introducing students to fraction learning. 

                                                      
1In this paper we follow Freudenthal in using the terms magnitude, magnitude value and quantity. Magnitude 
is a measurable property of an object; for instance, length. In the literature, what we call magnitude has also 
been referred to with the terms quantitative property and dimension. Magnitude value refers to the specific 
size of a magnitude in an object; for instance, the length of a stick. It has been referred to as quantitative 
magnitude (Thompson & Saldanha, 2003) and quantity not quantified (Lamon, 2007). Finally, we use the term 
quantity to refer to the measure of the value of a magnitude that is expressed with a number; for instance, the 
length of a stick is 12 (centimeters). It has been referred to as measure. 

In J. Dindyal, L. P. Cheng & S. F. Ng (Eds.), Mathematics education: Expanding horizons (Proceedings of the 35th annual 
conference of the Mathematics Education Research Group of Australasia). Singapore: MERGA.  
© Mathematics Education Research Group of Australasia Inc. 2012 



 

Revisiting Freudenthal’s Insights on Fraction 

In his didactical phenomenology, Freudenthal (1983) distinguished between two 
different ways of conceiving fractions: as fracturers and as comparers. In the first of these 
two ways fractions are conceived as numbers that account for actions that physically modify 
objects. A notorious example of such actions is partitioning a pizza into equal sized pieces. 
In contrast, in the second approach, fractions are numbers that account for the relative size 
of magnitude values. An example is the capacity of a cup to hold milk, relative to the 
capacity of a milk carton. The actions that take place in order to conduct such 
comparisons—pouring milk and marking milk levels—serve to gauge a specific property of 
the objects involved, and need not affect the cohesiveness of the objects.  

Fraction as Fracturer 

For Freudenthal, the fraction as fracturer approach involves construing the meaning of a 
unitary fraction as a piece of a whole, which is obtained by equal partition. In this approach, 
the unit-whole is typically understood as being an object; that is, as a thing (e.g., an actual 
candy bar) instead of as a property of thing (e.g., the mass or the length that is specific to a 
certain candy bar). A fraction is understood as something that is produced by fracturing the 
object, literally. In this interpretation, learners would understand 1/5 of a candy bar as one 
of five equal pieces of what used to be a single candy bar (see Figure 1). 

 

Figure 1. A fifth as a fraction of a unit-whole (i.e., a candy bar), where setting it apart implies disassembling 
the unit-whole. 

The typical instructional situations that are used to introduce fractions to students 
involve the equal partition of a food item—such as a pizza—so that it can be shared among 
a certain number of people. From the point of view of a designer with already developed 
fraction reasoning, the food item is meant to serve as a representation of a unit-whole, of a 
continuous magnitude (i.e., a mass of food embodying the value of one), and the size of the 
pieces produced by equally partitioning it, as the entities that unit-fractions quantify. 
However, the fraction 1/b is also meant to be interpreted by learners, in a realistic way, as 
the part of a food item (e.g., a pizza) that someone will get when receiving 1 out of b equal-
sized pieces (Clarke & Roche, 2009). In the case of the fraction a/b (a1), the expectation is 
that students will come to make sense of the numerator as a number-symbol that accounts 
for a “number of parts of that name or size” (Clarke & Roche, 2009, p. 136).  
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Figure 2. Fractions as numbers that account for equal partitions. From top to bottom: (a) a candy bar as unit-
whole, (b) the candy bar partitioned into fifths (i.e., five equal pieces), and (c) 2/5 of the candy bar shaded. 

Situations involving the partitioning and sharing of food-items have been widely used as 
a context for supporting students in making sense of fractions. These situations appear in 
textbooks, in specialised teacher-literature, and in research (e.g., Steffe & Olive, 2010; 
Streefland, 1991; Tzur, 1999). The wide use of these situations can be (at least partially) 
justified by revisiting the three characteristics of a viable starting point. Much evidence 
exists that students can readily and meaningfully engage with the food partitioning 
situations, even from an early age (cf. Pitkethly & Hunting, 1996). In addition, these 
situations have been shown to trigger informal ways of reasoning, on which students can be 
supported to make sense of some important fraction relations, such as the relative size of 
unitary fractions (e.g., 1/31/4), and basic fraction equivalencies (e.g., 1/2=2/4; 1/4=2/8; cf. 
Lamon, 2007). 

However, it is with regard to the third criterion—serving as an anchor for students’ 
reasoning as learning evolves—that Freudenthal’s analysis brings into question the viability 
of situations involving the equal partition and sharing of food items as starting points for 
instruction. Freudenthal (1983) judged situations, in which learners operate on objects, that 
is fraction as fracturer situations, to be “much too restricted not only phenomenologically 
but also mathematically” (p. 144). For him, they are phenomenologically restricted because 
fractions become consistently “seen or imagined within the whole” (p. 147). As a 
consequence, in the fracturer approach, fractions become restricted to being “proper 
fractions only (<1)” (p. 147). In addition, these situations are mathematically restricted 
because the operation of partition as the basis of equivalence relation always only generates 
a restricted number of elements in each equivalence class.2 As Freudenthal explains, in 
order to use fractions as a phenomenological source of the rational number, “an equivalence 
of broader scope is needed, as well as the unrestricted availability of objects in every 
equivalence class” (p. 147).  

Freudenthal’s assessment of the shortcomings of fraction as fracturer is consistent with 
the concerns expressed by Thompson and Saldanha (2003) about the limitations of 
traditional fraction instruction:  

Students are often instructed, and therefore learn, that the fractional part is contained within the 
whole, so “A is some fraction of B” connotes a sense of inclusion to them, that A is a subset of B. As 
a result, statements like “A is 6/5 of B” make no sense to them (p. 107).  

                                                      
2In instructional terms, a pizza can always only produce four fourths, which makes imagery of 7/4 
problematic. This problem is inherent to how a magnitude is constituted in a system of quantities via operation 
of partition: if equivalence is defined only by the operation of partition, we have no means to compare 
quantities of elements produced from different unit-wholes (different pizzas).  
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These authors also contend that students’ oftentimes develop an image of fractions, in 
which they are seen as numbers that account for so many out of so many. Thompson and 
Saldanha (2003) contend that this image too 

…possesses a sense of inclusion—that the first “so many” must be included in the other “so many”. 
As a result, they [the students] will not accept the idea that we can speak of one quantity’s size as 
being a fraction of another’s size when they have nothing physically in common. They will accept 
“The number of boys is what fraction of the number of children?”, but they will be puzzled by “The 
number of boys is what fraction of the number of girls?” (p. 104). 

The concrete imagery that learners develop while working on problems that involve 
food partitioning and sharing is not consistent with, and thus does not easily lend itself to 
building more sophisticated fraction and rational number imagery. These situations do not 
fulfil the third criterion of a viable starting point, serving as an anchor for students’ 
reasoning as learning evolves. Instead, they orient students to develop an initial 
understanding of fractions as fracturer. As studies on learning difficulties in fractions 
document, this initial understanding makes it particularly difficult for children to later make 
sense of fractions as numbers that soundly quantify values bigger than one, as well as the 
size of something in relation to something else that does not contain it (Hackenberg, 2007). 
We thus consider it reasonable to regard these situations as inadequate in initial fraction 
instruction and to seek a viable alternative. 

An Alternative to Equal Partitioning 

Freudenthal (1983) and Thompson and Saldanha (2003) envisioned a similar alternative 
to the use of equal partitioning—an alternative in which ratio comparisons (i.e., fraction as 
comparer) become the focus of fraction instruction. In this alternative, fractions are used to 
quantify magnitude values by comparing them to a magnitude value of reference (construed 
as having the size of 1), in multiplicative terms (Figure 3). 

 

Figure 3. (a) The unit whole (a stick) construed as a specific length (i.e., a magnitude value), and 1/5 of it as 
another specific length that satisfies the condition of 5 iterations of it being as long as the unit-whole. (b) 7/5 

construed as a specific length that is 7 times as long as 1/5 of the length of the unit-whole. 

Based on the analyses of these authors, it is possible to picture an alternative image of a 
unitary fraction to cultivate in students. It becomes a magnitude value that satisfies an 
iterative condition, regarding a magnitude value of reference, in the following terms: A is 
1/n as large as B when B is n times as large as A.  

Regarding the three characteristics of a viable starting point for instruction, the analyses 
suggest that opting for problems aimed at orienting students to interpret unitary fractions as 
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multiplicands would fulfill the third criterion. However, it is unclear whether such problems 
would fulfill the first two criteria of a viable starting point. We report on initial insights into 
viability of the approach with regard to the first two criteria. 

Methodology and Data Sources 

We conducted clinical interviews with sixteen students (ages 8 and 9) who formed the 
only third-grade classroom in a public school in southern Mexico. An analysis of their 
notebooks suggested that they had had limited opportunities to learn about fractions with 
understanding. Instead, their prior instructional experiences seemed to have entailed much 
of what Anyon (1981) identified as work that most often involves “substantial amounts of 
rote activity” (p. 203). In addition, students in this classroom performed poorly in the 
national standardised test known as ENLACE. This group was thus suitable for testing the 
viability of the approach as a starting point. 

Interview Protocol 

For the iterative approach to be instructionally useful, we considered that students 
should, from the outset, have access to ways of reasoning about a core notions that pupils 
are typically expected to make sense of in the initial phases of fraction instruction, relative 
size of unitary fractions (NCTM, 2000).  

The interview protocol included three problems. In the first, Milk Carton, the students 
were asked to make judgments about the relative capacity of seven different kinds of cups, 
based on how many cups of each kind could be filled with the milk contained in a carton. 
The actual cups were not shown to them (Figure 4). We asked students to make 
comparisons similar to: 1/2 vs. 1/4; 1/3 vs. 1/4; 1/7 vs. 1/9; 1/20 vs. 1/1 (formulated “Which 
cup can hold more milk, plastic or glass one?”). 

 

Figure 4. Cards used in the Milk Carton problem to show how many cups of each kind could be filled with the 
milk contained in a carton and image of the milk carton that was used. 

Two more similar problems, Kangaroos, and Water Tanks were introduced and will be 
reported on during the conference presentation. In these, the students were encouraged to 
make context-based fraction comparisons such as 1/2 vs. 1/4 vs. 1/5, (Kangaroos) and ?/8 = 
1/2, ?/8 = 1/4, ?/8 = 3/4 (Water Tanks).  
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Data Coding 

The interview data was open coded, following an ongoing formulation of provisional 
categories (Strauss & Corbin, 1990). We sought to identify similarities and differences in 
how students construed the problems, and in the mathematical reasoning that emerged.  

The evidence we used for determining that a problem had been construed as 
experientially real (first characteristic of a viable starting point) consisted of verbal 
expressions and gestures that suggested that a student was reasoning about the quantities 
involved in the problem, and not just about the numbers. For instance, in the Milk Carton 
problem, this type of evidence included students referring to amounts of milk or making 
gestures with their hands indicating the size of cups. The informal ways of reasoning about 
fractions (second characteristic) that the students developed in response to the interview 
problems are outlined in the Results section.  

Results 

 Given the evidence criteria, all of the students construed the three problems as 
experientially real. The following extract illustrates Marilu reasoning about the size of the 
plastic cup (Figure 4): 

Interviewer: When I serve one cup of milk, how far does the milk carton empty? 
Marilu: To here [marking the carton at about the middle]. 
Interviewer: Why? 
Marilu: Because they are this size [gesturing with her fingers the size of a cup]  

Gestures referring to the actual size of cups indicated to us that a student like Marilu had 
interpreted the problem as involving actual quantities. In other words, it indicated that a 
student was imagistically involved with the problem at hand and, thus, engaging in 
personally meaningful mathematical activity. Results from this component of the analysis 
support considering the proposed starting point for fraction instruction as viable. They 
suggest that it would be possible to support a group of third grade students, like those we 
interviewed, to readily construe problems based on the comparer approach as experientially 
real. 

We further documented the informal ways of reasoning students developed about 
relative size of unitary fractions and about basic fraction equivalencies. Here we report on 
instructionally relevant differences in how students reasoned about relative size of unitary 
fractions, while solving problems where magnitude values were defined as multiplicands 
that satisfy an iterative condition (Table 1). 

Table 1 
Number of Students in Different Categories, According to How They Reasoned about the 
Relative Size of Unitary Fractions 

 

Category 1 
The bigger the 
number, the larger the 
magnitude value 

Category 2 
Visual evidence

Category 3 
Coming to 
anticipate 

Category 4 
Anticipating that the more 
iterations, the smaller the 
magnitude values 

N 2 3 5 6 

 
Students that showed the least sophisticated reasoning (Category 1, N=2) had some 

intuitions that were consistent with assessing the size of magnitude values relative to how 
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many iterations of it would be necessary to complete a unit. These students correctly 
regarded the aluminum cups (twentieths) as being small, and the pewter cups (ones) as 
being big. However, these intuitions were not sufficiently robust to allow pupils to make 
sound comparisons of the sizes of magnitude values. They instead followed a different 
rationale: The bigger the number, the larger the magnitude value.  

Category 2 students (N=3), relying on the marks of their estimates (e.g., on the milk 
carton), made comparisons consistent with the idea that the more iterations of a magnitude 
value were needed to make as much as a unit, the smaller the magnitude value had to be. 
However, during the interviews, these students did not come to understand this principle 
sufficiently well to consider that it would apply in every case.  

Category 3 students (N=5) came to anticipate that the more iterations of a magnitude 
value that were needed to make as much as a unit, the smaller the magnitude value had to 
be. Finally, the remaining students (Category 4, N=6) readily judged that the more iterations 
of a magnitude were needed to make as much as a unit, the smaller the magnitude value had 
to be.  

To illustrate, Zaide was one of the students in category 3. She initially anticipated that 
the plastic cups (halves) would be smaller than the glass cups (fourths). After marking on 
the carton sensible estimates of where the levels of the milk would be if one plastic cup and 
one glass cup were served, respectively, she changed her mind and considered that the 
plastic cups would be bigger. When comparing the glass cups (fourths) and the pottery cups 
(thirds), she followed a similar path. Finally, she anticipated that the foam cups (ninths) 
would hold less milk than the paper cups (sevenths): 

Interviewer: Which would be bigger? 
Zaide: The foam cups [ninths]. 
Intervewer: Bigger? 
Zaide: Oh, no, the paper ones [sevenths].  
Interviewer: The paper or the foam ones? 
Zaide: Paper. 
Interviwer: Why the paper ones? 
Zaide: Because if they put nine cups it goes down less. And if you put seven it goes down faster. 
Interviewer: Which can hold more? 
Zaide: The seven ones [paper cups]. 
Interviewer: The seven ones can hold more? 
Zaide: Because they are not many cups.  

In the excerpt it is noticeable that Zaide reasoned about the respective capacity of the 
paper cups based on how the levels of the milk in the carton would change as these cups 
were served. Her previous estimations seemed to have helped her develop an image that 
when more cups were to be served, the level of the milk in the carton would drop less with 
one serving (“it goes down less”). This image allowed her to correctly anticipate that the 
foam cups (ninths) would be smaller than the paper cups (sevenths). Importantly, as Zaide 
progressed through Kangaroos and Water Tanks problems, she came to readily anticipate 
the relative comparisons correctly.  

With different levels of sophistication, the large majority of the students correctly 
judged the relative size of the magnitude values involved in the different problems. Even the 
students who showed the least sophisticated reasoning had some intuitions that were 
consistent with the just mentioned property of unitary fractions (e.g., regarded the aluminum 
cups (twentieths) as being small, and the pewter cups (ones) as being big). 

Of particular significance were the Category 3 students, whose reasoning became more 
sophisticated during the interview. They started by using a natural number rationale in 
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comparing the capacity of the cups, and later came to correctly conceive their relative 
capacity, without having to rely on visual evidence. Their case suggests that problems based 
on the iterative approach can be a means by which to support students to engage in 
progressive mathematisation (Gravemeijer & Doorman, 1999) in the fraction realm. 

Conclusion and Significance 

 The results indicate that problems based on the iterative approach can be a viable 
starting point for fraction instruction. Students’ informal reasoning during the interviews 
was consistent with coming to make sense of two core notions of initial fraction 
instruction—relative size of unitary fractions and basic fraction equivalencies. These 
findings provide a strong justification for developing instructional sequences that take 
advantage of the identified starting point. 
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