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An important element in teaching is the quality of content knowledge that teachers use in the 
design and delivery of their lessons. In this study, we present aframeworkfor investigating 
how this knowledge is structured. The framework is then used in the analysis of an experienced 
teacher's knowledge of functions and the teaching of functions. The data show that our 
teacher has built up knowledge that is dominated by conceptual rather than procedural 
aspects offunctions. 

BACKGROUND 
Much of the recent research on the learning of mathematics has focus sed on students' 
ability to use previously-acquired knowledge in making progress with the solution of novel 
problems. An important development in this area has been appreciating that the quality of 
the knowledge that students acquire may have a significant influence on how well that 
knowledge is used in the search for solutions to problems. In a classroom setting, teachers 
play an active role in facilitating not only the acquisition of new knowledge by their students, 
but also in providing pedagogically valuable experiences that may assist in extending that 
knowledge into new territories. 

An important element in the goals that teachers set for their lessons and the structuring of 
these lessons is their own understanding of both the subject-matter and their students. 
Thus, the nature of a teachers' knowledge base underlying a particular mathematical topic 
and the teaching of that topic can be expected to exert a major influence on the quality of 
the understanding that students develop about that area of mathematics. While this point 
about the role of teachers' know ledge base has received considerable support in research 
findings (Ball and McDiarmid, 1990) and curriculum reform documents (National Council 
of Teachers of Mathematics, 1989) there is little information about the interaction between 
teachers' subject-matter knowledge and what students learn. In the present study, we begin 
a process of addressing this issue by examining an experienced teacher's knowledge about 
algebra and how that knowledge is used in modelling functions. 

Schemas as Structured Mathematical Knowledge 

Network theorists have advanced several theoretical frameworks in which to investigate 
concepts and their development. According to one view, conceptual growth and 
mathematical understanding can be interpreted in terms of conceptual nodes and relations 
between nodes (Anderson, 1995). As students' experiences with a concept or a set of 
concepts increase, they come to form organised meaningful wholes. Various attempts have 
been made to elucidate such cognitive structures. Among these, the notion of schemas has 
gained considerable support amongst researchers. 

In the context of learning, schemas have been given a number of interpretations in the 
psychological literature. Skemp (1985) describes how we construct 'what we already know' 
by engaging in mental construction of reality by building and testing a schematic knowledge 
structure, where a schema is "a conceptual structure existing in its own right, independently 
of action" (Skemp, 1979:219). In the context of problem solving, Paas (1992:429) describes 
how a schema "can be conceptualised as a cognitive structure that enables problem solvers 
to recognize problems as belonging to a particular category of problems that require 
particular operations to reach a solution", while Sweller (1992:47) defines a schema as "a 
cognitive construct that permits problem solvers to categorise problems according to the 
moves required to solve them." Because our existing schemas serve either to promote or 
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restrict the association of new concepts, the quality of what an individual already knows is 
a key determinant of our ability to understand, or as Skemp (1979:113) concludes "our 
conceptual structures are a major factor of our progress". 

What then do schemas comprise? Dubinsky and others (Dubinsky, 1991, Cottrill et al., 
1996) use the acronym APOS to describe the four components of Action, Process, Object, 
Schema in the building of mathematical knowledge. The chain of events, they suggest, 
develops as follows. Actions, when applied to objects become processes, which in turn 
become encapsulated as mental objects. In turn examples of these three link together to 
form cognitive structures or schemas. Thus, conceptual entities in mathematics often present 
themselves with two distinct but complementary faces; they may be viewed as dynamic 
processes or as static objects. To make a mathematical idea readily manipulable and 
applicable in other contexts, it must be available internally in a concise form and the 
encapsulation of the process as an object is one way of accomplishing this. The relations 
that are constructed between the conceptual objects forming a schema could represent, for 
example: similarities and dissimilarities between concepts; instances of a concept; 
procedures for using concepts for solving problems; or affective factors related to those 
concepts. 

According to Anderson (1995), two variables determine the quality of a schema: the spread 
of the network and the strength of the links between the various components of information 
located within the network. A complex schema can be characterised as having a large 
network of ideas that are built around one or more core concepts. Further, the links between 
the various components in the network are robust, a feature which contributes to the 
accessing and use of the schema in problem-solving and other situations. A well structured 
schema can also benefit students by helping them assimilate incoming new mathematical 
ideas because such a schema can be expected to have many conceptual points to link with. 
As a theoretical construct schemas provide a useful way to interpret the growth of 
mathematical knowledge. 

Teacher Knowledge and Schema Induction 

Applying the above ideas about the nature of mathematical schemas and their formation to 
teaching and learning in the classroom it becomes apparent that the quality of the mental 
schemas of the teacher may be a key component in a) what is learnt and b) how it is learnt 
by their students. When we examine mental schemas of teachers in any given content area 
we become aware of what the important links which we want students to build into their 
knowledge structures are, and we could structure the learning environment towards these. 

Leinhardt (1989) have suggested the existence of strong links between teachers' subject­
matter knowledge, their explanations and the type of representations generated by students. 
A schema-based analysis, therefore, suggests that teacher actions could promote the 
construction of powerful schemas that would benefit student learning in two important 
ways. Firstly, students would better access prior knowledge and integrate that with incoming 
information. Secondly, students could be expected to deploy acquired knowledge flexibly 
during the process of problem analysis. Hence the question is, what is the nature of a 
teacher's knowledge that would promote the construction of type of schema that are useful? 

The aim of this research study was to examine the above issue by characterising the schemas 
of experienced teachers in the content area of function. This is part of a larger project in 
which we will compare and contrast schemas of the experienced teachers with those of 
teachers who are new to the teaching of algebra and functions. 

One major difference we have hypothesised has to do with encapsulation of processes as 
objects. Many individuals appear not to progress to the point where they can think in a 
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dual proceptual (Gray & Tall, 1994) or versatile way (Tall & Thomas, 1991; Hong & 
Thomas, 1998), about mathematical symbols, seeing them either as a process invoked by 
the symbol or as the concept represented by it. Instead, they are process-oriented (Thomas, 
1994) in their thinking, constrained primarily to mathematical processes. For a teacher the 
absence of the object view in their schemas may structure their thinking, causing them to 
over-stress procedural methods. In contrast the versatile teacher, with a global view of a 
concept, is able to see its components, or constituent processes, and relate these to the 
whole, rather than seeing only the part in the context oflimited, procedural understanding. 

Considering this in the context of function, how would the schemas and teaching approach 
of a teacher with a conceptual view of function diverge from those who have a primarily 
procedural base? An example could be the construction of a composite function fg from 
the functions f and g where 

f(x)=x2 and g(x)=x+l, so thatfg(x)=(x+lj2. 

One might be able to carry out such a procedure without actually having a concept of what 
a composite function actually is. Our view is that it would be difficult for a procedurally­
oriented teacher to engage students from a conceptual perspective. What does this kind of 
teaching involve? 

We present in Figure 1 a theoretical view of a modelling approach to teaching. According 
to this model, the emphasis is on a progress~on from the formal aspects to the algorithmic 
components associated with the focus concept (Fischbein, 1994). It should be noted that this 
process is usually cyclical. This model may be contrasted with a procedural perspective which 
starts with a symbolic representation for a function, seen as representing a procedure and either 
operates on it (as above) or uses it as an algorithm in the fonn of value in and value out. 

Figure 1 
A macro model of the structure of teachers' mathematical knowledge 

Examples 

Representations 

Algorithms 

Note: se 1 stands for subsidiary concept one etc. 

METHOD AND RESULTS 

This research employs a case study methodology, examining the conceptual structures of 
individual teachers and their influence on their teaching. The research is very much still in 
progress and this paper describes the results in relation to one participant experienced 
teacher. 
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Margot 1, an Experienced Teacher 

A number of criteria were set up for defining whether a teacher could be categorised as 
experienced, particularly with respect to the use of technology in their teaching, which is 
to be a future focus of the study. Margot, a secondary school, teacher in Auckland, New 
Zealand, fulfilled each of these, having 31 years teaching experience, including 15 years 
using technology in mathematics teaching. She has been active in promoting the use of 
calculators and computers to other teachers in her school, has attended professional 
development courses including study for a Diploma in Mathematics Education, where she 
took a paper on Technology in Mathematics Education. In addition, she has run advisory 
courses on using graphic calculators and was recently seconded to a one-year appointment 
as a mathematics adviser. 

Procedure 

Margot took part in a non-structured, free recall interview in January 1999, where she was 
asked to talk freely about functions and polynomials. The interview was recorded on 
aUdiotape and afterwards transcribed for analysis. Later we were able to go into Margot's 
school and observe and videotape two lessons on function. This data is still being analysed 
and the discussion presented here is based solely on the free recall interview. 

Margot's Schematic Structure 

Margot had a conceptual view of function uriderpinning her teaching. She saw function 
very much as a relationship between two variables and commented that, when teaching 
about functions "you tend to concentrate on is the relationship between two variables the 
fact that there is one variable affecting the outcome of another variable ... So you're 
encouraging relationships between variables." Further this relationship was about change. 
She commented that "You could just say that there is a connection between these two 
variables, which one is causing the change, and what is the result of the change?" and "So 
what we tend to do is do this practical type work first where they're getting the idea of this 
variable changing and this one resulting." This relationship for her was strongly based on 
the idea of a one-to-one mapping between the values of the two variables. Her comments 
were often expressed in terms of practical examples, which she clearly saw as very important 
for her own understanding and her teaching, and as modelling the function concept. For 
example she talks about beakers of water, kangaroo jumps, pendulums and costs etc. 

Margot emphasises throughout the one-to-one nature of a function, "one in, one ouC 
clearly excluding a one-to-many relationship (this emphasis should not necessarily be 
taken to mean that she excludes a many-to-one function, since this was not specifically 
mentioned). Furthermore, the distinction between discrete and continuous variables is 
something she is very conscious of. 

One of the things that I find that causes confusion is the distinction between discrete and 
continuous. You take them away and you do, you know a quadratic patterning, your kangaroos 
jumping or whatever and that's a discrete pattern. And then all of a sudden you produce a 
parabola which is continuous, and I don't think myself at the moment that I'm yet very good 
at making the distinction there for them between the two, and I think a lot of them lose that. . 
. Yes, yes, because the kangaroos they can see, where the kangaroo, the jumping one, they can 
see that this is a discrete, you know, you take ten jumps, you take five jumps you take four 
jumps, whereas with this they will be able to see that with that fac't that what you're graphing 
is a continuous, a continuous movement. 

What subsidiary concepts did Margot have embedded in her overall conceptual view of 
function? Clearly from her comments variable is the primary subsidiary concept, but in 
any modelling episode there are others which emerge, as the example below demonstrates. 
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Modelling - An Illustrative Example 

We can illustrate Margot's approach to teaching via modelling, and the subsidiary concepts 
supporting it, by detailed reference to one example from her interview. She describes at 
some length one way to approach the teaching of rates of change with sixth form students 
(age 17 years), in this way: 

What we then try to do again is to make the work as practical as possible, and last year what 
we did was we took the coil of rope, we took a coil of rope and we, I went out to [store name] 
and brought all this bits of string and they mark off. So this is bits of rope being round onto a 
coil and they mark off with pen, and they get a table for the number of the coil and the length 
of the string. 

So what they're actually doing, is they're modelling rope being wound by machine or onto a 
spool or whatever. Worked beautifully, it was perfect, and then we gave them questions that, 
we asked them to graph it, so they were graphing, and then we asked them to estimate the rate 
at which the rope was going on between two integer values, so that they could work from the 
table. 

We then asked them to work out the rate at which it was going on two interpolated values so 
they actually had to work from that curve, and then we asked them to work out the instantaneous 
rate at which it was going on, so that they had to have the idea of a tangent. But again, this is 
all functions because again we're looking at one variable resulting in a change and another 
variable and the resulting graph and how you interpret it, and when we modelled that on the 
graphics calculator, it was just beautifuL 

The emphasis on modelling is clear here. Not just in Margot's use of the word which 
indicates that she believes she is encouraging modelling, but in terms of the whole approach. 
Her aim is to take a real world 'practical' situation and represent it mathematically. In 
terms of our theoretical model, the focus concept of function is supported by, and related 
to, subsidiary concepts, each of which has a number of different representations. The 
underlying subsidiary concepts which she specifically mentions or alludes to for function 
are: average and instantaneous rate of change; interpolation; chord, tangent; gradient; and 
variable. The major representations employed are symbolic, tabular and graphical. Margot 
often sees the value of technology in enabling manipulation of the mathematical concepts 
both within and between these different representations (Thompson, 1992), but whether 
the technology is used or not, the transition between representations, preserving the 
conceptual structure of the mathematics is a crucial one in her schemas. In this example, 
the variables are first symbolised (one representation) with the function being a relationship 
between the independent and dependent variables, and then there is a move between 
representations as the symbols enable access to a tabular representation. Working within 
this tabular representation the average rate of change is calculated from the two sets of 
values present. As a next step, Margot uses two values which have not been directly 
measured to stimulate the use of a graphical representation, with a co-ordinate or ordered 
pair representation of the data as the link between table and graph. Once in the graphical 
mode an algorithm to find the gradient of a chord from the use of interpolated values is 
employed (we note that although this can be done by linear interpolation from the table 
this was not mentioned here). Finally, also working within the graphical representation, 
the concept of instantaneous rate of change requiring the graphing of a tangent and an 
algorithm to find its gradient, was introduced. This example does not involve algebraic 
symbolisation other than of the variables, since the situation has been adequately represented 
mathematically without recourse to this (although, of course, one could have gone on to 
model a polynomial function for the data). The final step in the modelling process involves 
working within a representation to carry out algorithmic processes, in this case to calculate 
gradients or rates of change, namely between two points and at a point. 
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This example, which as stated, is lacking a symbolic, algebraic representation of function 
is still completely about function for Margot, since as she says "this is all functions because 
again we're looking at one variable resulting in a change and another variable". This 
fundamental conceptual mental construct, the linking of an independent and a dependent 
variable, runs through all her ideas on function. 

When we isolate some of the key concepts which Margot is building into the modelling 
she is doing in the classroom what kind of rich relationships do we see? Figure 2 presents 
an attempt to represent a macro view of this modelling example and its relationship to our 
theoretical model. We are currently investigating Margot's schematic thinking by looking 
at the micro level too, taking some of the focus concepts, such as those in this example, 
and drawing simplified schemas for them based on Margot's comments in the free recall 
task. The quality of some of the links in Margot's schemas may be observed in the comments 
she makes. For example, Margot is definitely not limited to thinking in one representation. 

Figure 2 
A Macro View of Margot's Modelling Example and its Relationship with the Theoretical 
Model 

Concepts Physical Examples Representations Algorithms 

. Function Wind string on spool Symbolise variables Calculate gradient of a 
chord 

Variable Mark length Construct table of Calculate gradient of a 
values tangent 

Rate of change Count number of coils Convert table to 
(average and ordered pairs 
instant) 

Chord, Tangent Plot Graph 

Gradient 

When she talks she moves seamlessly between them. One significant episode showing the 
linking between concepts and representations is the way that Margot connects the symbolic 
form of variable and function, with parameters and the inverse function; 

Well, where you have two variables where x and y are related to one another through a third 
variable often denoted by the letter t. So for example if you were to graphx=t, y=t2you would 
actually be graphing y=X2. To get your inverse, all you then have to do is make x= t2 , y=t, and 
you get that mirror image. So that works really nicely. 

Notice here also her use of the terms "graphing" and "mirror image" referring to a graphical 
representation, in the context of a manipulation within the symbolic representation whereby 
she combines x=t and y=t2 to get Y=X2. This demonstrates that her schemas are flexible 
enough to allow her to think and work between representations and that she has schematic 
links between these and variable, function, parametric form, and inverse function. 

DISCUSSION 

In this paper we have introduced a model for studying teachers' conceptual knowledge in 
a given domain in relation to mathematical modelling. In this model we have considered 
the role of schematic knowledge and how it is important to have high quality, strong 
connections between the concept under focus and both subsidiary concepts and their 
representations. It is our contention that it is the richness and robustness of the structure of 
the teachers' schemas which are a primary influence on whether their teaching of the focus 
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concept is procedural or conceptual. The data presented here suggest that experienced 
teachers may have more links to subsidiary concepts, and place greater emphasis on these 
and we hypothesise that these links enable them to move between representations more 
easily, keeping the focus concept intact, while gaining the advantages that each has to 
offer. In contrast, an emphasis on procedural aspects of the focus concept would make it 
more difficult to move across representations and hence tend to anchor one in one 
representation, for example, the symbolic one. This difference may be illustrated with 
regard to function by considering two approaches to teaching a graphical solution to the 
problem: "Find graphically where y=x2-3 is zero" 

A teacher, such as Margot, who has a rich schema for function with many subsidiary 
concepts, will keep alive the concept of a one-to-one (or one-to-many) relationship 
between variables as the representations are traversed. The table of values, the set of co­
ordinates and the graph are each simply viewed as another representation of the symbolically 
presented functional relationship which assigns a value xl-3 to a value x, in a one-to-one 
manner. The question (which could be answered in any representation) then becomes 'Which 
value of x produces the value O?' In contrast, a teacher who has less rich schemas may 
concentrate on a procedural approach which lacks this underlying linkage. A sequence of 
conceptually unconnected procedures, in or between representations, is the result. Thus, 
students may calculate values of y given certain values of x. They may transfer these to a 
graph by a matching procedure which aligns the first number to the x-axis and the second 
to the y-axis, giving a sequence of points, .and then join these up. The final procedure, in 
the graphical mode, sees them read the value where the curve crosses the x-axis. While the 
solutions may be the same, the conceptual knowledge built is quite different. The results 
of our study indicate a potential relationship between teachers' schema and the quality of 
schemas constructed by students. Chinnappan (1998) showed that, even when students 
had built up a reasonable number of schemas in the domain of geometry, the quality of 
their problem search was not flexible enough to construct alternative representations of 
the given problem. It would seem that these students' schemas had more procedural than 
conceptual information. We suggest that teachers need to draw more on conceptually­
dominated schemas of the type revealed by our experienced teacher in order to promote a 
more flexible approach to mathematical learning and problem solving by students. 
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