
Rethinking what it means to understand: the case of combinatorial problem 
solving 

Lyn D.English 
Queensland University of Technology 

This paper argues for the need to address children's structural understanding in dealing with mathematical 
problems. In support of this argument, a study that investigated children's structural understanding of 2-
D and 3-D combinatorial problems, via a range of thought-revealing tasks, is reported. The results raise 
a number of issues for further attention, including the discrepancy between children's accuracy and their 
structural understanding, and the lack of significant correlation between children's graphic and symbolic 
representations on most of the problems. Individual profiles of response highlight the importance of 
rethinking our interpretations of understanding. 

With the increasingly widespread use of national and international comparative studies of 
school mathematics (e.g., Literacy and Numeracy Benchmarks; Third International 
Mathematics and Science Study [Stigler & Hiebert, 1997]), it is imperative that we do not fall 
into the trap of equating accuracy with understanding. The current testing frenzy is all the more 
reason to focus our attention on what it means to understand mathematical ideas, how we 
might best foster this understanding, and how we might assess for its presence. In this paper, 
I argue for the need to address children's structural understanding in dealing with mathematical 
problems. To illustrate my argument, I report on aspects of a study that implemented a range 
of tasks designed to assess this understanding in fIfth-grade children's combinatorial problem 
solving (English, 1998a). 

Defining Structural Understanding 
This section addresses the nature of structural understanding, as used in the present 

study. First, it is necessary to defIne problem structure. The structure of a problem or 
problematic situation refers to the ways in which its mathematical ideas relate to each other, 
irrespective of the context in which the ideas are set (English, in press a; Novick, 1992). 
Structural understanding extends beyond a recognition of problem structure. For children to 
have developed a structural understanding of a given problem type (e.g., Cartesian products), 
they need to be able to: 

1. explain the meaning of a problem; 
2. represent the problem in different modes, including concrete, graphic and symbolic forms; 
3. apply the processes of analogical reasoning to: 

(a) identify the structural elements of the problem; 
(b) detect the structural similarities and differences within, and between, related problems; 
(c) solve more complex cases of the given problem; and 
(d) pose new problems from the given problem. (English, 1998a) 

Some might argue that aspects of (3), above, are an application of problem solving, 
rather than a fundamental component. On the contrary, a failure to apply the processes of 
analogical reasoning is one of the major causes of students' difficulties in dealing with 
mathematical problems (English & Halford, 1995; Holyoak & Thagard, 1995; Novick, 1995). 
Indeed, this was pointed out by Polya (1954) several decades ago. 

Simply put, analogical reasoning entails understanding something new by analogy with 
something that is known, and is a fundamental process in children's mathematicalleaming and 
overall development (English, in press b). When applied to problem solving, reasoning by 
analogy fIrst requires the solver to recognize and understand the structure of a given problem 
(known as the "source" or "base"), whether the problem be recalled from memory or supplied 
by an outside agent. Knowing the source structure can be of assistance in solving anew, 
related (target) problem, because the source structure can be mapped onto the structure of the 
target problem (Gentner & Gentner, 1983; Gentner, 1989; Holyoak & Thagard, 1995). 

Despite the fact that reasoning by analogy contributes signifIcantly to children's 
conceptual development during problem solving, it has received little attention from the 
mathematics education community (English, in press b, Holyoak & Koh, 1987; Novick, 
1988, 1995; Silver, 1990). This is surprising, given that one of our major goals of 
mathematics education is for children to see the connections and relationships between 
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mathematical ideas and to apply this understanding to the construction of new ideas and to the 
solution of new problems (English & Halford, 1995; Fuson, 1992; Hiebert, 1992; National 
Council of Teachers of Mathematics, 1989, 1991). It is thus imperative that children's 
problem experiences include a focus on the processes of analogical reasoning. 

Combinatorial Problem Solving 
The present study investigated children's structural understanding of 2-D and 3-D 

combinatorial problems (i.e., X x Y [Cartesian products], and X x Y x Z). An analysis of the 
mathematical structure of these problems is presented in English. 1998a. In contrast to the 
focus placed on the other elementary problem types (e.g., Clark & Kamii, 1996; Kouba, 
1989), combinatorial problems have received little research attention. This is a serious 
omission in the mathematics education literature, especially since they are one of the most 
difficult of the multiplication types for elementary school children (English, 1997; Harel & 
Confrey, 1994; Mulligan & Mitchelrnore, 1997; Nesher, 1988; Outhred, 1996). Furthermore, 
combinatorics is a significant component of the curriculum, comprising a rich structure of 
significant mathematical principles that underlie several other areas such as counting, 
computation, and probability (English, 1993). 

The existing literature has indicated that children employ a range of strategies in solving 
combinatorial problems (English, 1993, 1996a; Mulligan & Mitchelmore, 1997), that they 
frequently view the problems in terms of additive, combine problems (Nesher, 1992), and 
that, in general, they do not like dealing with problems of this nature, despite their colourful 
contexts (English, 1996b, 1998a). What seems to be lacking are studies that have undertaken a 
comprehensive analysis of children's structural understanding of these problems. To redress 
this situation, the present study employed a diverse range of "thought-revealing tasks" (as 
described in the methodology) that involved children in describing, explaining, representing, 
constructing, and justifying their ideas. (Lesh, Hoover, Hole, Kelly, & Post, in press; Lesh & 
Clarke, in press; Lester & Kroll, 1996). 

To provide some background for examining the children's responses, the next section 
reviews briefly some approaches to representing and solving combinatorial problems. 
Approaches to Representing and Solving Combinatorial Problems 

Research on children's strategies in solving combinatorial problems has not been 
prolific. Previous studies (e.g., English, 1993; English, 1996a) identified 10 different 
strategies children use in solving 2- and 3-D cases when presented in both concrete and word 
problem form. These strategies range from trial-and-error approaches to the efficient odometer 
procedure (cl. odometer of a vehicle). As indicated graphically in Figure 1 (a), this latter 
strategy involves holding constant an item from one set (set X) and systematically combining 
it with each of the items in the other set (set Y). When this procedure is applied to 3-D 
examples, two items are held constant simultaneously (from sets X and Y), while the third 
item (from set Z) is systematically varied (see Figure 1 [bD. It is beyond the scope of this 
paper to address all of the different solution strategies children have been observed to use. Of 
relevance here is the efficient odometer strategy, which was reflected in the children's 
representations, as mentioned in the results. 

(a) 2-D problem 
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(b) 3-D probleni 2"", Z2 

. "'" /z, 
Figure 1 Graphic Representation of the Odometer Procedure Y3 ............ Z2 
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There is also a variety of graphic representations, including diagrams, sketches, and 
tables (Cunningham & Hubbold, 1992) that may be used both in representing and in solving 
combinatorial problems. As discussed later, these include systematic listing/drawings of 
combinations, hierarchies or branching structures (''tree diagrams;" Novick, 1996; see Figure 
1),. and matrices or rectangular arrays (Behr, Harel, Post, & Lesh, 1994; DeGuire, 1991; 
Diezmann, 1998; English & Halford, 1995; Novick, 1990). It has been argued that the ways 
in which children represent problem situations, whether these be in concrete, graphic, or 
symbolic form, are indicative of the ways in which they construct mathematical relationships 
(Davis, 1992; Diezmann, 1998; Hiebert & Wearne, 1992; Mulligan & MitcheImore, 1996; 
Outhred, 1996). On the other hand, as Mulligan and Mitchelmore's (1996) study suggested, 
children may choose to structure their representations in a way that minimises cognitive load. 
Their study found that, although children's initial pictorial recordings reflected the semantic 
structure of a problem situation, some children restructured their representations to simplify 
calculation. 

The important point here is that we cannot assume children understand combinatorial 
structures just because their problem representations might suggest this. Not until we observe 
children's responses across a range of problem situations, such as those described next, can 
we draw any conclusions. 

METHOD 
Participants 

Thirty-two futh-grade children from two schools participated in the study (mean age of 
10.2 years). The schools were located in contrasting neighbourhoods of Brisbane. The 
children had been exposed to combinatorial problems in their mathematics curriculum. 
Tasks and Procedures 

The children were interviewed individually in two sessions, each of about 20 minutes 
duration. Whenever possible, the two sessions were conducted on consecutive days. Each 
child's responses were videotaped and transcribed for subsequent analysis. The problems 
presented in the two sessions appear in the appendix: Problems 1 - 4 are 2-D cases, while 
Problems 5 and 6 are 3-D examples. The following procedures were used. 

Session 1 
Each child was presented with Problems 1 and 2, which were placed on separate cards 

and read aloud for the child. When asked if they had experienced problems like these in class, 
all but four of the children said they had done so. The children were then directed to: (i) 
explain, in their own words, what each problem means, (ii) indicate how the two problems are 
similar to each other, and (ill) indicate how the two problems are different from each other. 
With respect to the latter, if the child simply referred to surface or contextual features, the 
question was asked, "Can you see any other way in which the problems are different from 
each other?" 

The children were then directed to solve each problem, using the paper and colored 
pencils provided. The children were asked to show all of their working, and then to write a 
symbolic statement (number sentence) that represented their solution. The children were also 
asked whether they considered their problem to have been solved, and why. Finally, the 
children were invited to pose their own combinatorial problem, using one of the given 
examples as a base. 
Session 2 

The second session commenced with Problems 3 and 4 being presented along with two 
other problems that had different structures from Problems 3 and 4, but the same context. 
These problems were as follows: (a) In an activity class, Jenny and her friends made 6 blue skirts, 4 red 
skirts, and 6 white skirts to sell at the school fair. How many skirts did they make altogether? and (b) Tom 
has a big, hungry family. His family started the week with 5 loaves of white bread, 6 loaves of brown bread, 3 
chickens, and 15 slices of corned beef. Towards the end of the week. the family had 1 loaf of white bread, 1 
chicken, and 5 slices of corned beef left. How much of each item had his family eaten? The four problems 
were displayed randomly and the children were asked to select those problems that had similar 
structures (i.e., would be solved in a similar way) and to justify their selection. 

Next, the children were directed to solve the two Cartesian product problems (problems 
3 and 4), using the paper and colored pencils provided. The children were asked to show all of 
their working, and then to write a symbolic statement ·(number sentence) that represented their 
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solution. The children's solving of Problems 3 and 4 served as the source for the remaining 
activity, in which the 3-D target problems (problems 5 and 6) were introduced. For these two 
target problems, the children were asked: (i) how the target problems are similar to, and 
different from, the two source problems (3 and 4), and (ii) how the source problems might 
help them solve the target problems. As before, the children were asked to solve each of the 
two target problems, to show all of their working, and to write a symbolic statement that 
represented the solution. 

RESULTS 
Children's responses to the present tasks have been examined in tenns of the key 

components of structural understanding presented earlier, in addition to their ability to solve 
the problems. It is not possible to include all of the results within the present page limit; these 
will be presented at the conference. 
Children's Accuracy 

The children had few difficulties in solving the six problems. The percentages of 
children who solved each problem are as follows: 94% for each of Problems I and 2, 100% 
for Problem 3, 90% for Problem 4, 87% for Problem 5, and 77% for Problem 6. It is 
interesting that the children performed better on Problem 5 than 6, even though the latter is less 
complex computationally (2 x 2 x 2, compared with 3 x 2 x 2 for Problem 5). 
Applying the· Processes of Analogical Reasoning 

Substantial evidence of the children's structural understanding of 2-D and 3-D 
combinatorial problems was gained from their ability to apply the processes of analogical 
reasoning. Included here are the children's: (i) identification of the similarities and differences 
between Problems 1 and 2, and likewise, for the remaining problems (as presented in Session 
2); (ii) recognition of how source Problems 3 and 4 could assist in the solution of target 
Problems 5 and 6, and (ill) posing of new problems using Problems 1 and 2 as the base. 
These results are touched upon in the discussion. 
Children's Graphic and Symbolic Representations 

The nature of the children's graphic and symbolic representations provided further 
insights into the extent of their structural understanding. 
Graphic Representations 

There were five types of graphic representations identified in the children's responses 
(examples of these will be given in the conference presentation). In increasing order of 
abstractness, these representations are: 
(i) Random andlor partial listing of items. including the use of drawings or words. These 

responses involved a random andlor partial listing of individual items (or combinations). 
Sometimes, such a response involved only a few single items being recorded randomly on the 
child's page. 
(ll) Systematic listings or drawings. Responses in this category involved lists or drawings of 
combinations that were generated in a systematic manner. In the majority of cases, this listing 
reflected the use of an odometer procedure (as described previously), but occasionally a cyclic 
approach was evident (English, 1993). That is, in contrast to holding an item constant, the latter 
approach involves "cycling" through items in each set (e.g., white breadlham, brown bread 
!chicken, multig,rain bread/corned beef, white bread/chicken, brown bread/corned beef .... ). 
(ill) System of Paths. As described by Novick (1996), a system of paths does not have a 
fonnal structure, and does not necessarily have a unique starting or ending node, as in a 
branching structure or hierarchy (described next). The items in a system of paths have identical 
status, and the links between them can be associative, unidirectional, or bidirectional. There 
are no constraints on the linking of items (i.e., any item may be linked to any other item). 
When a child uses a system of paths in working the present problems, it is usually difficult to 
discern how the links between items have been made and also, whether a random or 
systematic procedure has been used in fonning the links. 
(iv) A Branching or Hierarchical Structure. This form of representation is commonly referred 
to as a ''tree diagram," an example of which is given in Figure 1. Among the key features of 
this representation is the unidirectional nature of the links between items, that is, the path 
flows from a beginning node to an endpoint. Items at the same level cannot be linked, and 
neither can items in non-adjacent levels (Novick, 1996). Only a single path can enter each 
node but multiple paths can leave the node. Furthermore, as Novick pointed out, each node 
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includes implicit information about how to reach it. For the present problems, the odometer 
procedure is clearly reflected in the design of the branching structure. 
(v) Ouasi-matrix. As the name implies, this fonn of representation displays the basic features 
of a standard matrix, in that it has a rows-and-column format representing distinct sets of 
items. However, a quasi-matrix, as applied to this study, lacks some of the standard notations 
of a formal matrix. This may include an omission of the main grid lines or a failure to fully 
label them, and a failure to complete all cells. Nevertheless, these quasi-matrices display a 
factorial combiIiation (Novick, 1996), where all the values of one variable (e.g., one type of 
bread) have the values of another in common (e.g., combined with a one type of filling to 
represent one type of sandwich). There is no linking of items within the one row or column 
(e.g., one type of bread cannot be linked with another type of bread). 

No formal matrices were identified in the children's responses. This is not surprising, as 
children usually require specific instruction in using a standard matrix (Diezmann, 1998), and 
it is unlikely that such instruction would have been included in the children's fIfth-grade 
curriculum. Table 1 displays the percentages of children who used each of the above 
representations in working each of the problems. 

Table 1 
Percentage of Children Using Each Form of Graphic Representation 

Form of Representation 

Random or partial Systematic System of Branching Quasi-
listing of items listing! drawing paths structure matrix 

Problem 
1(3 x 2) 37 19 9 13 13 
2 (3 x 3) 13 22 6 22 22 
3 (3 x 2) 13 25 9 16 22 
4 (3 x 3) 16 22 13 13 22 
5 (3 x2 x 2) 9 28 19 19 16 
6 (2 x 2 x 2) 16 31 16 19 9 

~ N = 32 The remaining children did not respond or gave a non-descript response. 

Although it is difficult to discern clear trends in the children's use of graphic 
representation, there are some points worth noting. First, there appears some improvement in 
the sophistication of the children's representations, particularly between Problems 1 and 2. 
Second, very few children used a system of paths when dealing with the 2-D problems 
(although there was a small increase on the 3-D problems). Third, the use of systematic 
listing/drawing was favored overall, and, in particular, in dealing with the 3-D problems. 
Children painstakingly listed each of the combinations for Problems 5 and 6, instead of 
making use of a more efficient, albeit abstract, representation. 

Also worth noting is the lack of consistency in the children's use of each type of graphic 
representation. Only nine children consistently used the one type of representation across all 
problems. Five of these children used systematic listing, three used a branching structure, and 
one randomly listed items. Of course, this lack of consistency may also be indicative of the 
children changing their graphic representation to suit the problem structure (e.g., adopting a 
different form of representation for the 3-D problems.). Ten children changed their form of 
representation when they moved to the 3-D problems, with this change not always being the 
most appropriate. Of these 10 children, three used two different representations in solving the 
3-D problems. 
Symbolic Representations . 

Children's symbolic representations of the problems included one-step and multi-step 
addition statements, one-step and multi-step multiplication, and the recording of an answer 
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only. The proportions of children displaying each type of statement on each problem appear in 
Table 2. 

Table 2 
Percentage of Children who Recorded Each Type of Symbolic Statement 

Problem 
I-step 
addition 

1 (3 x 2) 22 
2 (3 x 3) 3 
3 (3 x 2) 10 
4 (3 x 3) 3 
5 (3 x2 x 2) 6 
6 (2 x2 x 2) 25 

Type of Symbolic Statement 

Multi-step 
addition 

16 
12 
3 

25 
22 
12 

I-step Multi-step Answer 
multiplication multiplication only 

37 
59 
50 
59 
53 
37 

3 

6 
9 

6 
9 
9 
6 
9 
6 

~. N=32 The remaining children did not respond. 

Although multiplication statements were favored on each problem, there was, 
nevertheless, a considerable proportion of children who recorded addition statements, 
including multi-step addition. On Problems 1 and 6, in particular, the proportion of children 
who recorded addition statements was comparable to the proportion who gave multiplication 
statements. It is interesting that there was a noticeable decline in the use of multiplication 
between Problems 5 and 6. This reflects the previously cited decline in the children's accuracy 
between these problems. 

Sixty-nine percent of the children were consistent in their symbolic representations 
across the problems. That is, if the children recorded an addition statement for Problem 1, they 
did so for all of the remaining problems; they did likewise if they commenced with a 
multiplication statement. 

It is clear that the "primitive" repeated addition model of multiplication (Fischbein et al., 
1985) still dominated the thinking of many of the children·. Of particular concern, however, is 
the lack of multi-step multiplication statements for the 3-D problems (e.g., 2 x 2 x 2 = 8). The 
majority of children who wrote a multiplication statement for Problems 5 and 6 used only one 
step, such as, 4 x 3 = 12, and 4 x 2 = 8. This is an interesting rmding and warrants further 
research (the work of Behr et al., 1994 would be valuable here). 

One last finding of interest in this section is that there were only two significant 
correlations between children's graphic and symbolic representations, these occurring on 
Problems 3 and 5 (Ts = .559, P < .01 for Problem 3, and Ts = .403, p < .05 for Problem 5). 
For these problems, as children adopted the more abstract representations their symbolic 
statements changed from additive to multiplicative. 

DISCUSSION 
Children's responses to the problem tasks raise a number of issues. One of these 

pertains to the discrepancy between children's accuracy and the extent of their structural 
understanding. The majority of children could solve the problems, although a decline in 
accuracy occurred on Problem 6. Further research is needed to detennine the reasons for this 
decline, whether it be the problem context, or the equivalent sets of items ( 2 x 2 x 2), or some 
other factors. In contrast to their accuracy across the problems, the children's responses 
suggest weaknesses in their structural understanding. For example, only a small proportion of 
the children could provide a comprehensive explanation of the structure of Problems 1 and 2. 
Although some children might have had difficulties in expressing their understanding in 
words, this did not seem to hinder them in justifying their solutions to these first two 
problems. Here, they showed a greater awareness of the 2-D combinatorial structure. 
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Nevertheless, this awareness did not extend to detailing the structural similarities and 
differences within. and between. the 2-D and 3-D problems. The cross-multiplication feature 
of the 2-D problems was rarely highlighted, and likewise, the subtle structural differences 
between the 2-D and 3-D problems remained undetected by most of the children. This could 
partly explain why the children rarely wrote a multistep multiplication statement for the 3-D 
problems. At least the children were generally able to recognize how their solving of the 2-D 
problems coul<i assist them with the 3-D cases. 

Another issue relates to the rmding that the children's graphic and symbolic 
representations rarely correlated. This raises the question of the extent to which children's 
graphic and symbolic representations reflect their structural understanding of a given problem 
type (cf. Hiebert & Wearne's, 1992. argument). As Mulligan and Mitchelmore (1996) have 
noted, the multiplication notation children use in representing their solutions does not 
necessarily mean that they conceive of multiplication as a binary operation; they may simply be 
using it as a summary of their repeated addition process. 

An analysis of individual cases highlighted the above issues. For example, Sally 
displayed a knowledge of the odometer procedure yet recorded addition statements only. 
Sarah, on the other hand, did not demonstrate this knowledge, yet recorded a multiplication 
statement for each problem. Kate and Siobhan used sophisticated graphic representations and 
also recorded multiplication statements. However. neither girl could explain the meaning of 
Problems 1 and 2, and neither could give a detailed account of their structural similarities. On 
the other hand, they were more adept at detecting the structural differences among the different 
problems. Kate was able to pose a solvable problem. while Siobhan could not. 

This study has demonstrated the need to implement a broader range of thought-revealing 
tasks both in promoting and assessing children's development of structural understanding. We 
cannot assume that children fully understand problems of a given type just because they can 
solve them or can represent them in some acceptable format. This paper has attempted to 
illustrate the importance of looking beyond these skills to address the components of structural 
understanding that have been advanced. We should then have greater confidence in our 
children's attainments on comparative tests of school mathematics. 
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Appendix 

Problems Presented in the Two Sessions 

Session 1 
Problem 1 
Jenny has a blue skirt, a red skirt, and a yellow skirt. With these, she can wear a white T-shirt 
or a green T-shirt. How many different outfits can she make? 
Problem 2 
Tom is making sandwiches for a picnic. He has white bread, brown bread, and multigrain 
bread. He can fill these with ham, chicken, or corned beef .. How many different sandwiches 
can he make if each sandwich has one type of bread and one type of filling? 

Session 2 
Problem 3 (source problem) 
Mrs. Jones is trying to decide on a flower arrangement She can choose from roses, 
carnations, and daffodils. She can use a tall vase or a short vase. How many different 
arrangements could she make, if.she were to use only one type of flower and one type of 
vase? 
Problem 4 (source problem) 
Mark is making crazy animals. For the animals' heads, he can choose from a rooster, a 
monkey, and a duck. For their bodies, he can choose from a donkey, a rabbit, and an 
elephant. How many different crazy animals can he make? 
Problem 5 (target problem) 
Marina is making boxes of greeting cards to sell at the fair. She has blue paper, red paper, and 
green paper. She also has striped ribbon, and spotted ribbon. For the lettering, she can use 
gold ink or silver ink. Each box will have different greeting cards. How many different 
greeting cards will she put in each box, if each card has one colored paper, one ribbon, and 
lettering of one color? 
Target Problem 6.(target problem) 
Mrs. J ones needs a new car but cannot decide what to buy. Here are her choices. She can 

choose from a 2-door or a 4-door car. It can have luxury seat covers or standard seat covers. It 
can also have metallic paint or regular paint How many different choices has she? 
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