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Learning to operate algebraically requires assimilation of new mathematical 
concepts and procedures. Current literature identified a gap between arithmetic 
and algebra and proposed a pre-algebra level. This paper reports on a 
longitudinal study that investigated students' readiness for algebra, from a 
cognitive perspective, to detennine what constitutes a pre-algebraic level of 
understanding. Thirty-three students in grades 7,8, and 9 participated. A two­
path model depicts the transition from arithmetic to pre-algebra to algebra; 
students' understanding of relevant knowledge is discussed. 

Pre-algebraic and Algebraic Knowledge 
Secondary students often seem unable to apply basic algebraic concepts and skills 

and do not appear to understand many of the underlying structures. This becomes evident 
when a distinction is drawn between perrormance and understanding as outcomes of 
instruction (Rosnick & Clements, 1980). Recent research has focused on the transition 
from arithmetic to algebra and the difficulties in developing algebraic concepts caused by a 
cognitive gap (Herscovics & Linchevski, 1994) or didactic cut (Filloy & Rojano, 1989). 
It is suggested that the gaplcut is located between the knowledge required to solve 
arithmetic equations, by inverting or undoing, and the knowledge required to solve 
algebraic equations by operating on or with the unknown or variable. Linchevski and 
Herscovics (1996) found that students could not operate spontaneously on or with the 
unknown and that grouping algebraic terms is not a simple problem. They argued that 
students viewed algebraic expressions intuitively as computational processes (cf. Sfard & 
Linchevski, 1994) and suggested that in teaching, instead of moving from variable to 
expression to equation, arithmetical solution of linear equations might be more suitable 
initially for learning to operate on or with the unknown. Filloy and Rojano (1989) believe 
such concerns indicate the need for an operational level of 'pre-algebraic knowledge' 
between arithmetic and algebra. 

However descriptions in the literature of what constitutes a pre-algebraic level of 
understanding are unclear. For example, Herscovics and Linchevski (1994) consider that 
the cognitive gap defines a level of pre-algebra and regard this as "involving those 
intuitive algebraic ideas stemming from the presence of an unknown in a fIfst degree 
equation" (p. 75). Linchevski (1995) provided an explanation for pre-algebra as 
incorporating substitution of numbers for letters and allowing students to build cognitive 
schemes through reflective activity and spontaneous procedures. In contrast to this, Bell 
(1996) proposed six hypotheses about algebraic thought. These included: resolution of 
complex arithmetic problems by step-by-step methods working from given data to 
unknowns or by global perceptions and use of multiple arithmetic relations; recognition 
and use of general properties of the number system and its operations; and use of a 
manipulable symbolic language to aid this work. We believe that these hypotheses are 
concerned both with pre-algebraic and algebraic thought and that a sound arithmetic 
knowledge base is essential to developing pre-algebraic concepts. Research has shown 
however that students' understanding of arithmetic principles is often inconsistent and can 
be a source of cognitive difficulties in acquiring such concepts. 

Cognitive Difficulties 
The Arithmetic Knowledge Base 

Algebra has been depicted as emerging from arithmetic and constructed in terms of 
students' prior knowledge of symbols, operations, and laws which are extended into 
higher order abstraction. For example, students need to form a more abstract view of 
addition in algebra as an object in Sfard's sense (see Linchevski, 1995). The function of 
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operations must also be extended and new knowledge assimilated in an algebraic 
framework. Booker (1987) exemplified this by stating that in order to solve equations, 
multiplication processes must include factorisation. Gallardo and Rojano (1987) reported 
difficulties students had in understanding algebraic principles that stemmed from an 
inadequate arithmetic knowledge base. These included difficulty with inversion of 
operations, the need to accommodate a move from operating vertically in arithmetic to 
working with equations presented horizontally in algebra, and the nature of eqUality. 
Linchevski and Herscovics (1994) conducted a study with grade six students which also 
found inadequacies in students' arithmetic knowledge base. They reported that students 
over-generalised order of operations, failed to perceive cancellation thus resulting in 
sequential operation of equations, and displayed a static view of the use of brackets. 
They considered all of these obstacles to be of a pre-algebraic nature. 

Booth (1989) stressed the importance of students' understanding various structural 
notions in arithmetic. Herscovics and Linchevski (1994) examined this contention by 
analysing the knowledge required to solve 4 + n - 2 + 5 = 11 + 3 - 5. They stated that 
students need to be able to use commutativity to obtain (n + 4) - 2 + 5 and associativity to 
perform [(4 - 2) + 5]. However MacGregor (1996) suggested that students possess an 
unsure understanding of the commutative law while Booth (1988) reported students 
believe that division, like addition, is commutative. A sound understanding of the 
distributive law is also essential for algebraic functioning (Demana & Leitzel, 1988). 
Students' conception of equals has been documented (Herscovisc & Linchevski, 1994; 
Kieran, 1981; Linchevski, 1995) as indicating an operation to be performed on the left of 
the equal sign with the answer· appearing to the right. Linchevski argued from a 
psychological point of view, that operating algebraically requires students to move from a 
unidirectional mode of reading an equation to multi-directional processing of information. 
Clearly, arithmetic principles are multifaceted; if they not well understood they may result 
in cognitive difficulties for students developing new algebraic skills. 
Unknowns and Variables 

The move from arithmetic to algebra also requires students' conceptions of 
operations performed on numbers to change so that the concept of operating on variables 
may develop (Filloy & Rojano, 1989). Conceptual obstacles in interpreting letters in 
algebra have included a lack of understanding concatenation. Herscovics and Linchevski 
(1994) found only 36% of 14 year old students gave a correct answer when asked to add 
4 onto 3n. They also reported that seventh graders made errors when substituting a 
number for n in 3n such as writing 32. 

We consider that understanding of the unknown and solving to find the unknown in 
an equation constitute, in part, a pre-algebraic level of understanding. Panizza, 
Sadovsky, and Sessa (1997) suggest that the notion of unknown may become an 
epistemological obstacle when trying to conceptualise the notion of variable. However 
others, such as Graham and Thomas (1997), maintain that allowing students to gain an 
appreciation of letters as labelled stores will help develop an understanding that will 
improve assimilation of later concepts. This notion has significant implications in light of 
Ursini and Triguero's (1997) finding that college students had difficulty discriminating 
between variable as unknown and variable as generalised number. They proposed 
understanding of variable as unknown implies: recognising and identifying in a problem 
situation the presence of something unknown that can be determined by considering the 
restrictions of the problem; the ability to substitute for the variable, the value or values that 
make the equation true; and determining the unknown by performing the required 
arithmetic and/or algebraic operations. 

A Sequence for Learning Complex Equations 
Complex linear equations in algebra such as 2x+ 3= 11 include three crucial 

components: an equals sign, a series of more than one operation, and a variable 'x'. We 
are describing these equations as complex, because they include more than one operation, 
as opposed to binary operations such as x+5=6. We propose a two-path model for 
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learning complex algebra where binary arithmetic (2+3=5), complex arithmetic 
(35+7+8=13) and complex pre-algebraic operations [3 (x+7)=24] are necessary 
components of one path and binary arithmetic (2+3=5), binary pre-algebraic (x+7=16) 
and binary algebraic (x+y=12) operations are necessary components of a second path. 
This means that understanding binary operations, such as 2x and x+ 3, should be a 
prerequisite to'understanding 2x+3=11 as should application of operational laws to series 
of operations. Additionally, we suggest that equations such as x+7=16 require solution 
procedures of a pre-algebraic nature which, at the lowest level, comprise use of inverse 
arithmetical procedures to find the unknown. The two-path model also assumes that 
learning linear algebraic equations will be facilitated by understanding isomorphic 
structures in complex arithmetic. The developmental literature (Collis, 1974; Sfard & 
Linchevski, 1994) supports this sequence in that it suggests acquisition of pre-algebraic 
and algebraic concepts in the following order: one occurrence of the unknown in binary 
operations, a series of operations on and with numbers and the unknown, multiples of the 
unknown, acceptance of lack of closure and immediate solution with a series of 
operations on the unknown, and finally relationships between two variables and 
operations on them. 

The purpose of our study was to explore students' early understandings of algebraic 
concepts as they moved from arithmetic to algebraic. This was to detennine: (a) the 
validity of the two-path model of sequential development of algebraic understanding and 
(b) what constituted a pre-algebraic level of understanding. Results from pilot work were 
published in Boulton-Lewis, et al., (in press), and for the pilot work and the first year of 
the study in Boulton-Lewis et al. (1997) and Cooper et al. (1997). This paper presents 
results for the three-years of the longitudinal study. 

Method 
Sample 

The sample comprised 33 students who were tested in the first year, in grade 7, in 
four state primary schools in Brisbane. These were feeder schools for the high school 
where, in the second and third years of the study, students were in grade 8 then grade 9. 
Generally these schools were in a middle socio-economic area. Interviews were 
conducted with the grade 7 students before any fonnal algebra instruction took place and 
with grade 8 students after they had received instruction in operational laws, use of 
brackets, and solution of arithmetic word and number problems. Grade 9 students were 
interviewed after they had learned about an 'unknown' in a linear equation and solution of 
a linear equation using balance procedures. 
Tasks and Procedure 

Students were presented with expressions and equations written on cards and asked 
questions that investigated: commutative (x, -, +, +; 35 ? 76=76 ? 35) and distributive (6 
x 13 = 60 + 18) laws; inverse operations (5x71=355, 355 ? 5 = 71; 64-29=35, 35 ? 
29=64); order of operations [32+(12x8)+3]; meaning of equals in an incomplete equation 

(28+7+20=) and a complete equation (28+7+20=60-36); meaning of unknown (+5=9; 
x+7=16; 3x = 12) and variable (+5; 3x);); and solution of linear equations [3x+7=22; 
3(x+ 7)=24]. Students were interviewed individually and videotaped. They were 
encouraged to complete each task, however, if they could not the interviewer proceeded to 
the next task. 
Analysis 

Interviews were transcribed and analysed to identify key categories. The NUD*IST 
program (Richards & Richards, 1994) was used to classify response protocols under 
these categories and further sub-categories. Responses for laws, inverse operations and 
order of operations were categorised as satisfactory or unsatisfactory as a basis for 
learning algebra. Responses for the other tasks were categorised as inappropriate, 
indicating a lack of knowledge required for the task; arithmetic, focus sing on arithmetical 
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procedures and numerical answers; pre-algebraic, evidencing understanding between 
arithmetic procedures and intuitive algebraic ideas (Herscovics & Linchevski, 1994) and 
use of inverse procedures; and algebraic, evidencing recognition of relationships 
expressed in simplified form and use of general properties of the number system and its 
operations (Bell, 1996). 

Results 
The summary results below will be illustrated by Tables and examples of responses 

at the conference presentation. 
Commutative and Distributive Laws, Inverse Operations and Order of Operations 

In grades 7 and 8 the majority of students (19 and 17 respectively) could not explain 
commutativity of addition and multiplication satisfactorily. However by grade 9, 25 
students gave a satisfactory explanation for commutativity. The majority of students in 
grades 7 (21) and 8 (17) could not give a satisfactory explanation for the distributive law 
and while a substantial number of students (14) still could not explain this law in grade 9, 
19 students were able to provide a satisfactory explanation. Inverse operations were 
explained satisfactorily by the majority of students in each grade (26, 30, and 33 
respectively) and by grades 8 and 9 most students explained order of operations 
satisfactorily (26 and 23 respectively) compared with only nine satisfactory explanations 
in grade 7. 
Meaning of Equals 

In each grade, the majority of students explained '=' in 28 + 7 + 20 == as find the 
answer. Only one response in grade 8 and three responses in grade 9 evidenced 
knowledge that '=' denoted an equivalence relationship by stating that both sides had to 
be equal. For '=' in 28+7+20=60-36, the majority of responses moved from arithmetic 
in grade 7 when 19 students stated equals meant the answer, to arithmetic (12) or 
algebraic (12) in grade 8 as students explained equals as either the answer or denoting 
equivalence, to algebraic in grade 9 with most students (19) explaining equals as 
equivalence or showing a balanced equation. 
Meaning of Unknown and Variable 

The majority of students in each grade indicated that, in + 5 = 9 (16, 22, and 
21 respectively), and x in x + 7 = 16 (18, 24, and 26 respectively) represented an 
unknown number. However when x was presented in 3x = 12 in grade 7 most students 
(18) did not know what this meant and gave an inappropriate explanation. In grade 8 
most students explained concatenated x either arithmetically as a times sign (12) or pre­
algebraically as an unknown number (12). In grade 9 most students' (25) explanations 
for x in 3x = 12 were pre-algebraic stating that x was an unknown number. 

For meaning of variable in grade 7 most students (18) stated pre-algebraically that 
in + 5 represented an unknown number; another eight students stated algebraically it 
was any number. Five students gave inappropriate responses and two stated it was the 
answer. In grades 8 and 9 the majority of students stated pre-algebraically that was an 
unknown number (15 and 18 respectively) or algebraically that is was any number (14 
each grade). In grade 9 there was only one arithmetic response and this indicated was 
the answer. For x in 3x most students in grades 7 (19) and 8 (15) responded 
arithmetically that it was a times (multiplication) sign. However by grade 9 the majority 
of students (17) stated pre-algebraically that it was an unknown number and a further 10 
students responded algebraically that it represented any number. 
Solution of Linear Equations 

The majority of students in grades 7 (14) and 8 (13), as one would expect, did not 
know how to solve 3x + 7 = 22. Eight students in grade 7 and 10 students in grade 8 
used inverse arithmetic processes to find what they believed was missing after x because 
they interpreted x as a 'times' sign. Nine students in grade 7 and 10 students in grade 8 
used inverse processes to solve for x which was categorised as pre-algebraic. By grade 9 

117 



most students (23) solved 3x + 7 = 22 pre-algebraically by using inverse processes. Two 
students did not know how to solve the equation and two used an incomplete pre­
algebraic balance method which entailed balancing the equation by taking 7 from both 
sides, then dividing 15 by 3, rather than dividing each side by 3. Six students solved by 
using a complete balance procedure which was categorised as algebraic. 

For 3(x + 7) = 24 the majority of students (27) in grade 7 did not know how to 
solve the equation, while six students used a pre-algebraic inverse procedure. By grade 8 
the majority of students still did not know how to solve the equation, however 12 
students did use a pre-algebraic inverse procedure. Six students used arithmetic 
processes: two were inverse and depended on finding the space after the x and four were 
trial and error. By grade 9 most students (19) used pre-algebraic inverse processes to 
solve 3(x + 7) = 24. Another four responses were pre-algebraic: three were incomplete 
balance and one was the incorrect balance method. Six responses were inappropriate, one 
student used a trial and error arithmetic process, and three students used a complete 
balance procedure which was categorised as algebraic. 

Discussion 
It was not until grade 9 that most students had sufficient understanding of the 

commutative and distributive laws to apply these to linear equations. These findings attest 
to MacGregor (1996) and Booth's (1988) contention that students have difficulty in 
understanding the commutative law. It also indicates a need for explicit instruction in 
these laws, in particular as Demana and Leitzel (1988) maintain that a sound 
understanding of the distributive property is essential for algebraic functioning. The 
majority of students displayed a satisfactory understanding of inverse procedures and 
correct order of operations by grade 8. Herscovics and Linchevski (1994) include 
understanding the order of operations as indicative of arithmetic functioning. Overall 
these results showed that it was not until grade 9 that most students displayed a 
satisfactory understanding of these arithmetic principles to apply them to algebra. Even 
then some students exhibited unsatisfactory understanding of each principle, except 
inverse operations, and would require instruction to facilitate understanding before they 
could apply them in an algebraic situation. 

For equals in the incomplete equation, the majority of students each year indicated 
an arithmetic understanding by stating it meant find the answer. For the complete 
equation, understanding of equals moved from arithmetic in grade 7, to arithmetic or 
algebraic in grade 8, with most students in grade 9 stating algebraically that '=' denoted 
an equal or balanced relationship. However in all three grades almost one third of the 
students interpreted '=' pre algebraically. Kieran (1981) noted that students require an 
equivalence understanding of equals to operate algebraically. By grade 9, 19 students 
demonstrated an equiValence understanding, however 14 students were still operating at 
either a pre-algebraic or arithmetic level. This suggests that while students' knowledge of 
'=' had developed, there was still a substantial number of students who did not 
understand '=' in an algebraic sense and would need to learn the concept of equivalence. 
Providing explicit instruction of equals at a pre-algebraic level, that is each side is the 
same, may bridge the gap between arithmetic and algebraic understanding of equals. 

Most students, over the three years, knew that in the expression and equation 
represented an unknown number. In the expression this is indicative of a pre-algebraic 
level of understanding as could be interpreted algebraically as representing 'any number' . 

In grades 8 and 9, 14 students did explain, in + 5, as any number and as understanding 

emerged in grade 9 some said it was a variable. These results indicate that understanding 
initially as an unknown number appears to be a suitable foundation from which to 
introduce the concept of any number or variable. Similarly by grade 9 most students 
explained x (not concatenated) in the equations as an unknown number. 

118 



Understanding of x in 3x was a more cognitively demanding task. Most students in 
grades 7 and 8 did not understand concatenated x and hence could not solve the linear 
equations. Allowing students opportunity to experience letters as labelled stores earlier in 
arithmetic instruction, as Graham and Thomas (1997) suggest, may foster intuitive 
understanding of concatenation and subsequent algebraic calculations. In grade 9, after 
students had been instructed in concatenation and use of inverse or balance procedures to 
solve an equation, most chose to use inverse pre-algebraic procedures to solve linear 
equations; a smaller number of students used balance procedures successfully. Sfard and 
Linchevski (1994) view the process of solving to find an unknown by reversing 
procedures or backtracking, as early algebraic thinking. We suggest that this solution 
process would be more appropriately placed at a pre-algebraic level of functioning. 

Conclusion 
Results for the three years of this study support the case for focussing on an explicit 

pre-algebraic level of understanding. This was particularly evident in students' 
unsatisfactory explanations of commutative and distributive laws, explanations for equals 
in the complete equation, and x in the expressions, and solution of the linear equations. 
The findings also support the sequence of instruction, as proposed in the model, that 
understanding of binary operations such as 3x is a prerequisite to solution of complex 
algebraic equations. We suggest that as arithmetic procedures are applied intuitively they 
should be taught ~xplicitly in order to provide a sound basis for pre-algebraic instruction. 
Our findings indicated certain inadequacies in students' arithmetic knowledge base. In 
particular we feel there is a need for explicit and prolonged instruction in commutative and 
distributive laws and that letters could be introduced earlier, in arithmetic, to represent 
labelled stores. Finally we propose that pre-algebra should include instruction in: 
operational laws; equals as equality of sides leading to equivalence; solution of binary and 
complex equations using inverse procedures; use of letters to represent unknowns as 
distinct from variables; extensive use of 'x' as 'times' between an unknown and its 
coefficient; concatenation; and should be based on students' arithmetic as well as intuitive 
algebraic know ledge. 
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