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Goldin (2003) and McDonald, Yanchar, and Osguthorpe (2005) have called for 
mathematics learning theory that reconciles the chasm between ideologies, and which may 
advance mathematics teaching and learning practice. This paper discusses the theoretical 
underpinnings of a recently completed PhD study that draws upon Popper’s (1978) three-
world model of knowledge as a lens through which to reconsider a variety of learning 
theories, including Piaget’s reflective abstraction. Based upon this consideration of 
theories, an alternative theoretical framework and complementary operational model was 
synthesised, the viability of which was demonstrated by its use to analyse the domain of 
early-number counting, addition and subtraction. 

Introduction 
An alternative theoretical framework has been proposed (Nutchey, 2011) that explicitly 
differentiates, and is thus able to describe, the knowledge shared in the learning 
community and each learner’s idiosyncratic understanding. This proposition is an 
attempt to address the perceived challenges of reconciling student-centred, 
constructivist learning and the state-able, objective structure of mathematics shared by a 
community of mathematicians. In this paper, literature substantiating this need is first 
identified, and then key theoretical constructs that inform the proposed alternative 
theoretical framework are summarised. The proposed theory is complemented by an 
operational model, of which a significant component is a graphical language for 
describing the organisation of a domain of mathematical knowledge shared by a 
community. This language is introduced, and then its viability is illustrated by applying 
it to the analysis and description of one perspective of early-number counting. A 
broader discussion of the viability and significance of the alternative theoretical 
framework, operational model and graphical language is then provided. 

Background 
Various theoretical bases are promoted for the teaching and learning of mathematics. 
Objectivist theories are often criticised for not taking into consideration the learner’s 
prior experience (Lesh, 1985). Despite these criticisms, objectivist-based practice 
remains prevalent in many of today’s classrooms (Falk & Millar, 2001) and computer-
mediated learning environments (McDonald et al., 2005). Constructivist-based 
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reformists argue for the development of experientially-based richly connected schemas 
of understanding. However, such practice is often stymied by the difficulties 
encountered when attempting to translate the constructivist theory into classroom 
practice (Baroody & Dowker, 2003; Scardamalia & Bereiter, 2006; Simon, Tzur, Heinz, 
& Kinzel, 2004; Steffe, 2004). Some of these difficulties have been attributed to the 
lack of focus upon the highly structured nature of mathematical domain knowledge 
(Kirschner, Sweller, & Clark, 2006; Mayer, 2004). The often occurring polarisation of 
these two theoretical viewpoints has been criticised (Goldin, 2003; McDonald et al., 
2005) as having a deleterious effect on mathematical education practice. Instead, such 
critics argue that each viewpoint has its associated strengths, and that these should be 
drawn upon to develop effective educational practice which recognises both learner 
idiosyncrasy and the state-able and thus objective nature of mathematical domain 
knowledge. Through the development of such a consilience (Goldin, 2003) of learning 
theory, contemporary mathematics education practice may be advanced. 
 Popper’s (1978) three-world model of knowledge and understanding has been 
adopted as a lens through which to re-consider the objectivist and constructivist 
theories. Popper’s three-world model permits the explicit differentiation of World 3 
knowledge shared in a community from the unique, experience-based World 2 
understanding of that knowledge held by each community member. In this model, 
World 2 understanding mediates between the World 3 knowledge of the community and 
the individual’s physical actions of World 1. That is, if the organisation of mathematical 
ideas that define the shared World 3 knowledge of some mathematical domain can be 
described, then the individual learner’s idiosyncratic and experientially developed and 
demonstrated World 2 understanding can then be mapped against this description of 
knowledge. This differentiation and modelling of both World 3 knowledge and World 2 
understanding is at the core of the proposed alternative theoretical framework. 
 Piaget (1977/2001) proposed reflective abstraction as a process of accommodation 
by adaptation that is sufficiently powerful to describe a learner’s entire conceptual 
development in mathematics. Five specific processes, or transformations, of reflective 
abstraction are noted in Piaget’s work (Dubinsky, 1991): interiorisation, coordination, 
encapsulation, generalisation and reversal. Interiorisation involves the internalisation 
and then re-presentation of some phenomena in a de-contextualised, more abstract way. 
Coordination involves the composition of two or more existing processes to form a 
more complex process. In a related way, encapsulation involves the bringing together of 
what were previously independent parts into a manipulable whole. This whole may 
represent the abstraction of a commonality between a set of concepts or the abstraction 
of a detailed process into a single object. Generalisation is the broadening of 
understanding by the application of existing processes and structures to a wider 
collection of problem phenomena. Finally, reversal involves the consideration of the 
differences between concepts and the subsequent abstraction of inverse or ‘undoing’ 
relationships. 
 Reflective abstraction is typically associated with the cognitive processes by which 
individuals construct idiosyncratic understanding. However, when Popper’s three-world 
model is adopted and World 3 knowledge is defined as the expression and thus sharing 
of idiosyncratic mental thought and cognitive process (i.e., World 2 understanding), 
then the description of shared World 3 knowledge will reflect these transformations of 
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reflective abstraction. Thus, reflective abstraction forms the basis of the proposed 
graphical language for describing mathematical World 3 knowledge. 

The graphical language 
The graphical language for describing World 3 knowledge is a major element of the 
proposed operational model that embodies the alternative theoretical framework. The 
graphical language is used to create genetic decompositions, a term borrowed from the 
work of Dubinsky (1991). A genetic decomposition is a network-like structure of nodes 
and links, and is in keeping with the notion of schema discussed in constructivist 
literature. Each node in a genetic decomposition is referred to as a knowledge object, 
and these knowledge objects are linked by one or more knowledge associations. Each 
knowledge association in the genetic decomposition describes some reflective 
abstraction-based relationship between the knowledge objects involved. In the 
following sub-sections, these constructs of the graphical language are discussed in 
greater detail. 

Knowledge objects 
Knowledge objects form the nodes in the network-like genetic decomposition, and of 
these there are three different types. At the core of learning in mathematics is the 
solution of problems, and so one type of knowledge object is the problem object. To 
form solutions to such problems, conceptual knowledge (i.e., principles, facts) may be 
drawn upon as well as procedural knowledge (i.e., skills and processes). Considering 
Baroody’s (2003) suggestion that to foster adaptive expertise conceptual and procedural 
knowledge should be integrated together, the second type of knowledge object is the 
concept object. Central to mathematical activity is the use of language to express the 
problems and concepts of the domain. To this end, the third type of knowledge object is 
the representation object, which is used to identify the different signs and symbols of 
the domain. The three knowledge object types are denoted in the graphical language 
using three different icons, as shown in Figure 1. 

Figure 1. Knowledge objects. 

Knowledge associations 
To organise the knowledge objects in a genetic decomposition, six different knowledge 
associations have been derived from Piaget’s reflective abstraction: inheritance, 
aggregation, solution, inversion, formalisation and expression. These associations are 
discussed in the remainder of this section: the syntax of each in the graphical language 
is shown in Figure 2, and then each of the associations and their derivation from 
Piaget’s reflective abstraction are summarised. 
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Inheritance – the Parent concept (or problem or representation) is a 
super-class, of which Child 1 and Child 2 are more specific sub-
types. 

 

Aggregation – the Aggregate concept (or problem or 
representation) is composed of Component 1 and Component 2. 

 

Solution – the Problem can be solved using the coordination of 
Concept 1 and Concept 2. 

 

Inversion – the Normal and Complement concepts (or problems) 
have differences.  

Formalisation – the Formal representation is a de-contextualised 
representation compared to the Informal representation. 

 

Expression – the Concept (or problem) is expressed using the 
Representation. 

 

Figure 2. Knowledge associations. 

Derived from Piaget’s encapsulation, the inheritance association describes either 
problem, concept or representation objects that share a super-ordinate relationship: The 
child objects are sub-types of the more abstract parent object. Inheritance is denoted by 
an open triangle attached to the parent, from which two or more lines connect the parent 
to each child. 
 The aggregation association is derived from Piaget’s coordination, and is used to 
describe the coordination of several component parts to form a more complex aggregate 
whole. Aggregation may be applied to either problem, concept or representation objects. 
The association is denoted by an open diamond attached to the aggregate, from which 
one or more lines connect the aggregate to each component. 
 The solution association defines the relationship between a problem and the concepts 
used to solve it. This association is derived from Piaget’s coordination and 
encapsulation (i.e., the use of two or more concepts in a coordinated manner to solve a 
problem) as well as generalisation (i.e., since a problem may be solved using several 
different co-ordinations of concepts, or a set of coordinated concepts may be used to 
solve a range of different problems). The solution association is denoted using a closed 
diamond attached to the problem, from which one or more lines connect the problem to 
each concept. 
 The inversion association is derived from Piaget’s reversal, and is used to describe 
two knowledge objects (either problems or concepts) that are in some way 
complementary to each other. The two knowledge objects are referred to as the normal 
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and complement objects. The association is denoted by a line connecting the two objects 
that is terminated by open and closed circles. 
 The formalisation association describes the increasingly abstract signs and symbols 
used in mathematics. Derived from Piaget’s interiorisation, formalisation captures the 
relative degree of de-contextualisation between two representation objects, which are 
referred to as the informal object and the more de-contextualised formal object. The 
formalisation association is denoted by a line connecting the informal and formal 
representation objects which is terminated by open arrow-heads. 
 The expression association describes the various ways by which a problem or 
concept may be represented, that is, how the signs and symbols of the domain may be 
used. This association is also derived from Piaget’s interiorisation, since when 
considered in combination with formalisation, the expression association suggests 
opportunities for interiorisation to occur. The expression association is denoted by a line 
connecting a representation object to a problem or concept object which is terminated 
by closed arrowheads. 

Application 
To demonstrate the viability of the proposed alternative theoretical framework, 
operational model and graphical language, literature regarding the domain of early-
number counting, addition and subtraction was analysed and described (Nutchey, 2011). 
In this section, a summary of the analysis and description of Gelman and Gallistel’s 
(1978) work on children’s counting is provided to demonstrate the use of the proposed 
graphical language. 
 Gelman and Gallistel (1978) theorised that a child’s ability to count is based on the 
coordination of five principles: the one-one principle, the stable-order principle, the 
cardinal principle, the abstraction principle, and the order-irrelevance principle. A 
genetic decomposition summarising this organisation of counting principles is presented 
in Figure 3 (next page), which is then explained. 
 Gelman and Gallistel discussed a stage-like development of a child’s counting 
ability; this has been described by the use of solution associations to describe the use of 
increasingly complex pre-counting, simple counting and counting concepts to solve the 
problem of single collection counting. 
 Pre-counting is described by the aggregation of the one-one principle and the stable-
order principle. The stable-order principle aggregates the concept of the numeron 
sequence, itself aggregating the notion of no tag repetition. An inheritance association 
describes two more specific types of numeron sequence: the conventional sequence and 
the un-conventional sequence. The difference between these two numeron sequences is 
highlighted by an inversion association. The conventional sequence is described by the 
aggregation of conventional numerons, whereas the un-conventional sequence is 
described by the aggregation of numerons, and thus the more specific conventional 
numerons or un-conventional numerons. The numeron sequence is also a component of 
synchronous tagging, which is in turn aggregated along with the skill of set partitioning 
to define the one-one principle. 
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Figure 3. A genetic decomposition of Gelman and Gallistel’s counting principles 

The more complex concept of simple counting is described by the aggregation of pre-
counting and the cardinal principle. The order irrelevance principle aggregates the 
concepts of the one-one principle and the notion of any-order. The abstraction principle 
aggregates the notion of countable entity. Together, the order irrelevance principle and 
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abstraction principle are aggregated along with simple counting to describe the most 
complex counting concept.  
 Gelman and Gallistel’s work focussed on children’s counting of perceptual objects, 
as described by the expression association that indicates the problem of single collection 
counting may be expressed using perceptual objects. The perceptual objects have two 
more specific forms, concrete and iconic, as described by the inheritance association. 
Similarly, perceptual objects may be used to express pre-counting, simple counting and 
counting. 

Discussion 
Using the proposed alternative theoretical framework, operational model and graphical 
language, other early-number literature has also been analysed and described (Nutchey, 
2011), including early-number word problem classification (Carpenter & Moser, 1983; 
Fuson, 1992), the development of number-word and number-sequence meaning (Fuson, 
1992; Olive, 2001; Steffe & Cobb, 1988) and the strategies used to solve early-number 
word problems (Carpenter & Moser, 1983; Fuson, 1992). The resultant genetic 
decompositions were then synthesised together to form a composite description of 
early-number; a process that revealed similarities, differences and sometimes 
discrepancies in the literature. The resulting complex genetic decomposition, presented 
in Nutchey (2011), includes 56 problem objects, 49 concept objects, three 
representation objects, and over 200 associations to organise these objects. This activity 
of analysis and description has demonstrated the viability of the proposed graphical 
language as a tool with which to characterise World 3 mathematical knowledge. In the 
future, further analysis and description activity should extend the composite description 
to include the various representations commonly used in early-number, in particular 
those that scaffold the development of counting, addition and subtraction strategies. 
 The composite description of early-number may provide a basis for the analysis and 
description of an individual learner’s World 2 understanding. A mechanism has been 
proposed (Nutchey, 2011) which suggests that World 2 understanding can be described 
(and thus analysed) in terms of a chronological sequence of images – collections of 
problem, concept and representation objects that each describe an activity in the 
learner’s conceptual development. Guided by the notion of reflective abstraction, the 
analysis of an image sequence may lead to the assessment of a learner’s understanding 
and the identification of future activities that may enhance their understanding. 
 The alternative theoretical framework, operational model and graphical language 
may potentially advance mathematics teaching and learning practice in several ways. 
The modelling technique may form the basis of computer-mediated learning 
environments that are responsive to learner’s mathematical conceptual development. 
The graphical language, when used to express the highly connected nature of 
mathematics, may support a teacher’s development of learning activities that scaffold 
students’ constructive exploration of this organisation of mathematical ideas. This 
potential for theory to impact practice will be the topic of future research and 
development activity. 

588



NUTCHEY 

MATHEMATICS: TRADITIONS AND [NEW] PRACTICES 
 

References 
Baroody, A. (2003). The development of adaptive expertise and flexibility: The integration of conceptual 

and procedural knowledge. In A. Baroody & A. Dowker (Eds.), The development of arithmetic 
concepts and skills: Constructing adaptive expertise (pp. 1–34). Mahwah, NJ: Lawrence Erlbaum 
Associates.  

Baroody, A., & Dowker, A. (2003). The development of arithmetic concepts and skills: Constructing 
adaptive expertise. Mahwah, NJ: Lawrence Erlbaum Associates.  

Carpenter, T., & Moser, J. (1983). Addition and subtraction operations: How they develop. Madison: 
Wisconsin Center for Education Research.  

Dubinsky, E. (1991). Reflective abstraction in advanced mathematical thinking. In  
D. Tall (Ed.), Advanced mathematical thinking (pp. 95–123). Dordrecht: Kluwer Academic 
Publishers.  

Falk, J., & Millar, P. (2001). Review of research: Literacy and numeracy in vocational education and 
training. Leabrook, SA: National Centre for Vocational Educational Research. 

Fuson, K. (1992). Research on whole number addition and subtraction. In D. Grouws (Ed.), Handbook of 
research on mathematics teaching and learning (pp. 243–275). New York: Macmillan Publishing 
Company.  

Gelman, R., & Gallistel, C. (1978). The child’s understanding of number. Cambridge, MA: Harvard 
University Press.  

Goldin, G. (2003). Developing complex understandings: On the relation of mathematics education 
research to education. Educational Studies in Mathematics, 54, 171–202. 

Kirschner, P., Sweller, J., & Clark, R. (2006). Why minimal guidance during instruction does not work: 
An analysis of the failure of constructivist, discovery, problem-based, experiential, and inquiry-based 
teaching. Educational Psychologist, 41(2), 75–86. 

Lesh, R. (1985). Conceptual analyses of problem solving performance. In E. Silver (Ed.), Teaching and 
learning mathematical problem solving: Multiple research perspectives. Hillsdale, NJ: Lawrence 
Erlbaum Associates.  

Mayer, R. (2004). Should there be a three-strikes rule against pure discovery learning? The case for 
guided methods of instruction. American Psychologist, 59(1), 14–19. 

McDonald, J., Yanchar, S., & Osguthorpe, R. (2005). Learning from programmed instruction: Examining 
implications for modern instructional technology. Educational Technology Research and 
Development, 52(2), 84–98. 

Nutchey, D. (2011). Towards a model for the description and analysis of mathematical knowledge and 
understanding. Brisbane: Queensland University of Technology. 

Olive, J. (2001). Children’s number sequences: An explanation of Steffe’s constructs and an extrapolation 
to rational numbers of arithmetic. The Mathematics Educator, 11(1), 4–9. 

Piaget, J. (2001/1977). Studies in reflecting abstraction (R. Campbell, Trans.). Sussex, England: 
Psychology Press. (Original work published in 1977)   

Popper, K. (1978). Three worlds. Retrieved 20th March, 2010, from http://www.tannerlectures.utah.edu/ 
lectures/documents/popper80.pdf. 

Scardamalia, M., & Bereiter, C. (2006). Knowledge building: Theory, pedagogy, and technology. In K. 
Sawyer (Ed.), Cambridge handbook of learning sciences (pp. 97–118). New York: Cambridge 
University Press.  

Simon, M., Tzur, R., Heinz, K., & Kinzel, M. (2004). Explicating a mechanism for conceptual learning: 
Elaborating the construct of reflective abstraction. Journal for Research in Mathematics Education, 
35(5), 305–329. 

Steffe, L. (2004). On the construction of learning trajectories of children: The case of commensurate 
fractions. Mathematical thinking and learning, 6(2), 129–162. 

Steffe, L., & Cobb, P. (1988). Construction of arithmetical meanings and strategies. New York: 
Springer-Verlag.  

589




