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In this research we explore pre-service teacher knowledge for teaching mathematics by 

focusing on the development of the conceptual and procedural knowledge of a cohort of 

pre-service teachers. In the first phase of this study, we found that a previous cohort of pre-

service teachers utilised procedural rather than conceptual knowledge when completing 

fraction operations. We aimed to address this imbalance by targeting the development of 

conceptual knowledge through modelling. This paper reports the results of this approach 

with a subsequent cohort of pre-service teachers, where our expectation of greater 

conceptual knowledge was achieved and procedural knowledge was maintained.  

Introduction 
The role of teacher knowledge has been acknowledged as vital in teachers doing their 

jobs. This issue has been a central concern of the mathematics teaching community both 

in Australia and elsewhere. We take up this issue in the present study. 

Teacher knowledge for teaching mathematics 
Shulman’s (1986) seminal work on teacher knowledge identified a range of different 

types of knowledge necessary for teachers to teach effectively. While he acknowledged 

the essential role of pedagogical knowledge, he highlighted the importance of content 

knowledge, which he categorised into subject matter knowledge, pedagogical content 

knowledge and curricular knowledge. 

 Teachers’ mathematical content knowledge affects the quality and nature of their 

teaching (Schoenfeld, 2000) and has been found to positively predict student 

achievement (Hill, Rowan, & Ball, 2005). There is little disagreement that teachers need 

to acquire and understand mathematics in order to teach it effectively.  

 In acknowledging the multidimensional character of teacher content knowledge, Ball 

and associates (Ball, Hill, & Bass, 2005; Hill et al., 2005) refined and developed four 

dimensions of this knowledge: Common Content Knowledge, Specialised Content 

Knowledge (SCK), Knowledge of Content and Students, and Knowledge of Content 

and Teaching.  

 SCK refers to the particular way teachers of mathematics have to understand their 

content. This involves, among other things, a ‘repackaging’ of their formal 

mathematical knowledge. The current study is aimed at better understanding the SCK of 
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prospective teachers. Specifically, we focus on two subsidiary components of SCK, 

namely, procedural and conceptual knowledge within the domain of fractions. We refer 

to these strands of knowledge as constituting two avatars (Sanskrit word for 

manifestation) of teacher knowledge in the sense that each of the components are 

incarnates or embodiments of one key knowledge form, namely, SCK which is the 

focus on the present study. 

Procedural versus conceptual knowledge 
Broadly speaking, procedural knowledge involves understanding the rules and routines 

of mathematics while conceptual knowledge involves an understanding of mathematical 

relationships. The relationship between procedural and conceptual knowledge, and the 

dependency of one on the other, continues to be a legitimate concern for mathematics 

teachers and researchers alike. Schneider and Stern (2010), in examining potential 

interconnections between the two, suggest that teaching and learning research needs to 

examine their parallel developments. Within the context of primary mathematics, and in 

particular fractions, Mack (2001) suggests that children’s use of strategies for 

representing and solving fraction problems are based on both these knowledge strands.  

 The relationships amongst and the relative role of these two main dimensions of 

knowledge that is relevant to decoding and solving fractions problems needs further 

clarification if we are to better inform teachers and knowledge underlying teaching. The 

debate on this issue appears to proceed along three lines. One view is that children learn 

conceptual knowledge of fractions before procedural knowledge (Groth & Bergner, 

2006). A second view is that children learn procedural knowledge before conceptual 

knowledge (Baroody, Feil & Johnson, 2007). Finally, it would seem that children’s 

conceptual knowledge and procedural knowledge grow in tandem with one building on 

the other (Schneider & Stern, 2010). While this debate is continuing, recent research by 

Hallett, Nunes and Bryant (2010) suggest that a) some children rely on procedural 

knowledge to inform conceptual knowledge and b) those who rely on conceptual 

knowledge of fractions tend to have an advantage over those who rely on procedural 

knowledge. Taken together, these findings suggest that teachers need to have a sound 

understanding of both these knowledge categories that involve fractions. That is, despite 

a growing call from some quarters to underplay the role of procedural knowledge in 

favour of conceptual knowledge (Rittle-Johnson, Siegler, & Alibali, 2001), teachers 

need to develop a repertoire of both these streams of knowledge as these are legitimate 

and necessary parts of the corpus of knowledge used by learners that teachers need to 

know. In this sense conceptual and procedural knowledge are important components of 

teachers’ SCK, and the investigation of this knowledge is a major aim of this study. 

Theoretical and Conceptual framework 
The aim and analyses of data in the present study are guided by two broad theoretical 

constructs. In the first instance, we draw on Ball et al.’s (2005) dimensions of teacher 

knowledge that inform mathematics teaching. Secondly, we examine the interplay 

between conceptual and procedural knowledge within the Representational-Reasoning 

(RR) model of mathematical understanding provided by Barmby, Harries, Higgins and 

Suggate (2009). According to this model, the quality of mathematical understanding can 

be captured by a) the type of representations that learners construct; and b) the 

robustness of reasoning that is used in establishing or justifying relations among the 
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representations. We see the RR model as somewhat unbiased in the interpretation of the 

relative roles of conceptual and procedural knowledge, as both components can be 

foregrounded in the representations and reasoning. 

Issues and aim 
The review of literature on teacher knowledge and teachers’ performance in relation to 

children’s numeracy levels has highlighted the need to research and monitor the 

developing knowledge of mathematics teachers who are in practice and those who are in 

training. Initially we investigated this issue by analysing the procedural and conceptual 

knowledge of fraction operations of a cohort of pre-service teachers (Forrester & 

Chinnappan, 2010). The results of this analysis demonstrated clearly the dominance of 

procedural knowledge over conceptual knowledge in this group, with almost four times 

the number of pre-service teachers activating procedural knowledge in comparison to 

those that demonstrated conceptual knowledge in their solution attempts. About one 

fifth of responses evidenced neither procedural nor conceptual knowledge.  

 While both knowledge categories are important, the dominance of one over the other 

would seem to be unhealthy for classroom practice, as teachers will have to support the 

development of both procedural and conceptual knowledge in their students across all 

strands of primary mathematics including fractions. This line of reasoning motivated us 

to modify our teaching strategies with the view to enhancing the conceptual component 

of our pre-service teachers’ knowledge of fractions. 

The aim of this study was, therefore, to ascertain the impact of a model based 

teaching (MBT) approach on the development of procedural and conceptual knowledge 

in the domain of fractions. This guided us in the development of the following research 

questions: 

1. Does a model-based teaching approach have an impact on the development of pre-

service primary teachers’ procedural knowledge of fractions? 

2. Does a model-based teaching approach have an impact on the development of pre-

service primary teachers’ conceptual knowledge of fractions? 

Methodology 
Participants 
Two hundred and twenty-four students (37 males and 187 females) participated in the 

present study. They were enrolled in a first year compulsory subject, which is generally 

completed in the second semester of a four-year Bachelor of Primary Education degree. 

Prior to entry into the program, the participants had a range of mathematical 

backgrounds. 

Procedure 
Model-based teaching 

Subsequent to the analysis of the 2009 cohort of pre-service teachers’ conceptual and 

procedural knowledge of fraction operations discussed earlier (Forrester & Chinnappan, 

2010) changes were made to the delivery of the subject in 2010. Utilising Barmby et 

al.’s (2009) notion that robust mathematical understanding is demonstrated when 

learners can construct and utilise multiple representations of mathematical ideas and can 

justify the relationships among representations, we focused on enabling our students to 
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develop models of fraction operations and appropriate explanations of these models 
(MBT approach).  

Tasks  

The following tasks were two parts of one question in a fifteen-question examination. 
They were selected from a pool of thirty-five questions given to students in their subject 
outlines at the beginning of the semester. These particular tasks were chosen to examine 
students’ mathematics content knowledge in terms of their conceptual and procedural 
knowledge of fractions and fraction algorithms. While the fractions were different from 
those given in the subject outline, the format of the questions was identical and students 
had been able to engage with similar questions throughout the session to consolidate 
their procedural and conceptual understandings. 
Task 1: Division problem involving a mixed number and fractions with different denominators 

1 1
2

1

4

 Two algorithms could be used to complete this task. Firstly students could: change 
the mixed number into an improper fraction; invert the divisor; multiply the numerators 
and denominators; check if the answer can be simplified. Alternately students could: 
change the mixed number into an improper fraction; identify a common denominator of 
the dividend and divisor; change the dividend and divisor to equivalent fractions; divide 
the numerators and denominators; check if the answer can be simplified. 
 One conceptual understanding of this task involves the notion that 1 1

2

1

4
 involves 

finding how many 1
4
s are in1 1

2
. Partitioning 1 1

2
into quarters and counting the number 

of quarters will achieve an answer of 6.  
Task 2: Addition problem involving a mixed number and fractions with different denominators 

1 5
6

2

3

Again, two algorithms could be used to complete this task, both involve most or all of 
these procedures: changing the mixed number to an improper fraction; identifying a 
common denominator of the addends; changing the addends to equivalent fractions; 
performing the addition; checking if the answer can be simplified. A conceptual 
knowledge of this task involves these elements: when the addends are modelled visually 
the wholes to which they relate are the same size; equivalent fractions e.g., 1 5

6
 is the 

same size as 11

6
, 2
3

is the same size as 4

6
, 15

6
 is the same size as 2 3

6
 which is the same size 

as 2 1
2
; addition involves joining two or more quantities together. 

 In undertaking the tasks, students were asked to complete the calculations and 
provide models and explanations of their models. They needed to use an appropriate 
algorithm for carrying out the required operation with fractions. The successful use of 
an appropriate algorithm would indicate that students have a procedural understanding 
and concomitant use of procedural knowledge. Conceptual understanding of these tasks 
involves demonstrating the nature of fractions (equal parts of a whole object or group) 
including the meaning of the common fraction symbol—as opposed to the 
misconception common among children that the numerator and denominator are simply 
two whole numbers (NSW Department of Education and Training, 2003). Additionally, 
a conceptual understanding of the tasks involves grasping what happens when dividing 
and adding fractions, including the relationship between the fractions involved. 
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Coding scheme 
Students’ responses to each of the two problems were analysed in terms of their 

demonstration of conceptual and procedural knowledge, and coded using a ten code 

scale (see Table 1). This coding scheme is a refinement of the one used to analyse the 

data collected and analysed previously (Forrester & Chinnappan, 2010) which was 

developed using the theoretical framework of Barmby et al. (2009) and Goldin’s (2008) 

analysis of problem representations. We wanted to modify our codes to allow for greater 

differentiation of responses, in terms of conceptual and procedural knowledge. This 

scale also includes a code for a category of responses that did not occur in the previous 

data (Code 8), where a correct solution was achieved through a conceptual model and 

no algorithm was utilised.  

Table 1 - Coding Scale. 

Code Algorithm Model/Explanation 

0 

None provided None provided 

Explanation: Where there is a response it is just an answer with no algorithm or 

model/explanation. 

1 

Inappropriate None or incorrect conceptual representations 

Explanation: An algorithm has been used but it is not appropriate for the problem. If a 

model/explanation has been provided it is incorrect conceptually. 

2 

Inappropriate with correct elements None or incorrect conceptual representations 

Explanation: While the algorithm used was inappropriate to the problem, important fraction 

processes were used e.g., making equivalent fractions, changing mixed numbers to improper 

fractions. If a model/explanation was provided it was incorrect conceptually. 

3 

Appropriate but errors made None or incorrect conceptual representations 

Explanation: The algorithm used was appropriate for the problem but an error occurred in 

its use. If a model/explanation was provided it was incorrect conceptually. 

4 

Appropriate, used correctly None or incorrect conceptual representations 

Explanation: The algorithm used was appropriate for the problem and achieved a correct 

answer. If a model/explanation was provided it was incorrect conceptually. 

5 

Appropriate but errors made Some level of conceptual representation 

Explanation: The algorithm used was appropriate for the problem but an error occurred in 

its use. The model/explanation utilises some level of conceptual representations. 

6 

Appropriate, used correctly Thorough procedural representation 

No conceptual representation 

Explanation: The algorithm used was appropriate for the problem and used to achieve a 

correct answer. The model/explanation was a detailed representation of the algorithm but 

did not demonstrate the concepts involved in fraction operations. 

7 

Appropriate, used correctly Some level of conceptual representation 

Explanation: The algorithm used was appropriate for the problem and used to achieve a 

correct answer. The model/explanation utilises some level of conceptual representation. 

8 

None provided Strong conceptual representations. 

Explanation: No algorithm was used. A correct answer was achieved using a conceptual 

model. 

9 

Appropriate, used correctly Strong conceptual representation 

Explanation: The algorithm used was appropriate for the problem and used to achieve a 

correct answer. The model/explanation was conceptually correct. 
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Inter-rater reliability analysis 
In order to determine the reliability of the coding scheme, we assessed the extent to 

which two coders agreed when they independently categorised students’ responses. The 

two researchers coded twenty-five students’ responses independently. The inter-coder 

reliability analysis, using the Kappa statistic, was performed to determine consistency. 

The inter-coder reliability was found to be Kappa = 0.77 (p < 0.001), 95% CI (0.504, 

0.848), indicating substantive agreement (Landis & Koch, 1977) in the way the 

students’ responses were coded by each researcher. Potential areas of disagreement 

were analysed which helped us to improve the distance between the codes, thereby 

reducing areas of ambiguity. 

Data and analysis 
Quantitative data analyses were conducted with the aid of SPSS version 18. Our 

analyses focused on the above ten categories of problem representation; the scale of our 

data was nominal. 

 In this paper we report the results of our analysis of student examination responses 

following a semester of lectures and tutorials that focused on developing conceptual and 

procedural knowledge through modelling and explanation (2010 cohort). We compare 

these results with those reported previously (2009 cohort) (Forrester & Chinnappan, 

2010). 

 The data were analysed in terms of the two research questions: 

1. Does a model-based teaching approach have an impact on the development of pre-service 

primary teachers’ procedural knowledge of fractions? 

The proportion of pre-service teachers who were able to find correct solutions to the 

fraction operation tasks using algorithms was not considerably different over the two 

years. Of the 2010 cohort, 74.6% (÷) and 76.4% (+) of participants were able to 

demonstrate the competent use of appropriate algorithms to achieve correct solutions in 

the division and addition tasks respectively (See Figures 1 and 2 - Codes of 4, 6, 7, 9). 

Within the 2009 cohort, 79.6% (x) and 72.6% (–) of participants were able to 

demonstrate the competent use of appropriate algorithms to achieve correct solutions in 

the multiplication and subtraction tasks respectively.  

 The proportion of pre-service teachers unable to achieve a correct answer using 

procedural or conceptual knowledge decreased slightly over the two years: Of the 2009 

cohort, 20.4% (x) and 27.4% (–) of participants did not achieve correct solutions in the 

multiplication and subtraction tasks respectively. Within the 2010 cohort, 17.9% (÷) and 

22.9% (+) of participants did not achieve correct solutions within the division and 

addition tasks respectively (See Figures 1 and 2 - Codes 0, 1, 2, 3, 5). 

 The impact of model-based teaching on pre-service teachers’ procedural knowledge 

is somewhat unclear because the data collected in 2009 and 2010 are not markedly 

different.  

2. Does a model-based teaching approach have an impact on the development of pre-service 

primary teachers’ conceptual knowledge of fractions? 

The majority of pre-service teachers in the 2010 cohort exhibited strong conceptual 

understanding, with 65.6% (÷) and 55.8% (+) (See Figures 1 and 2 - Codes of 8 and 9) 

being able to successfully model and explain the mathematical concepts involved in 
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division and addition operations. A further 1.8% (÷) and 4.9% (+) were able to 

demonstrate some level of conceptual understanding (See Figures 1 and 2 - Code of 7).  

 Interestingly, 7.6% of participants (17 students) were able to achieve a correct 

answer to the division task (÷) utilising a conceptual model without utilising an 

algorithm. Two participants (0.9%) achieved a correct solution to the addition task (+) 

utilising a conceptual model without using an algorithm (See Figures 1 and 2 - Code of 

8). Given that students were required to provide a calculation, any omission in 

providing evidence of procedural knowledge can be interpreted as not having this 

knowledge. 

 In comparing these results with those of the previous cohort (2009), it seems that a 

model-based approach to teaching has contributed to the substantial differences in our 

pre-service teachers’ demonstration of conceptual understanding of fraction operations 

over the period of this research. There are difficulties in making direct comparisons 

between these sets of data as we examined multiplication (x) and subtraction (–) in 2009 

and division (÷) and addition (+) in 2010. However, many of the concepts and 

procedures in finding a solution for these tasks are the same. In 2009, 11.8% of 

participants could demonstrate conceptual knowledge in multiplication (x) and 18.8% in 

subtraction (–). In the present study, 65.6% of participants evidenced conceptual 

knowledge in division (÷) (58% demonstrating both conceptual and procedural 

knowledge) while 55.8% could demonstrate conceptual knowledge in addition (+) 

(54.9% demonstrating both conceptual and procedural knowledge). We regard this as 

supporting our expectation of the positive impact of the model-based approach. 

  

Figure 1: Coding frequency for Division.  Figure 2: Coding frequency for Addition. 

Discussion and implications 
The study was grounded on the assumption that teachers’ Specialised Content 

Knowledge of Mathematics (Ball et al., 2005) needed to have both procedural and 

conceptual characteristics in the domain of fractions. While conceptual knowledge may 

subsume procedural knowledge and indeed contribute to a better understanding of 

related procedural knowledge, it is important to capture and support both strands of 

knowledge for future teachers of mathematics. 
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 The research questions were concerned with the impact a teaching approach that was 

based on modelling would have on the development of pre-service teachers’ procedural 

and conceptual knowledge of fractions. The results here suggest that, while there was no 

tangible effect on procedural knowledge, our teaching had a positive effect on pre-

service teachers’ conceptual knowledge. The design of the MBT was guided, in the first 

instance, by an analysis of the state of pre-service teachers’ knowledge within a narrow 

domain of context-free fraction problems. This analysis, it would seem, is critical for 

the design of MBT for fractions or similar approaches for other areas of primary 

mathematics. MBT was also framed around the notions of representations and reasons 

(Barmby et al., 2009) which aided us in visualising the role of conceptual and 

procedural knowledge in comprehending and making progress with the fraction 

problems. 

 The role of Barmby et al.’s (2009) framework in the development of MBT 

constitutes an important outcome of this research. We found the framework to be useful 

in drawing the distinction between procedural and conceptual knowledge, and how 

these two strands of knowledge interact and constrain the construction of 

representations. 

 The MBT approach was based on the assumption that pre-service teachers who had 

developed robust conceptual knowledge could be expected to exhibit strong procedural 

knowledge. This appears to be the case with most of our participants. However, there 

were a number of pre-service teachers who demonstrated conceptual knowledge but 

failed to activate the corresponding procedural knowledge. This raises a question about 

the character of conceptual knowledge in subsuming and supporting procedural 

knowledge. This issue needs further analysis and the subject of future investigations. 

 The results showed that pre-service teachers have developed strong conceptual 

understanding of division problems. However, the robustness of this understanding 

needs to be the subject of further research including the analysis of prospective 

teachers’ representations and solutions of division problems that are contextualised. The 

representation of division problems, both from a conceptual and procedural point of 

view, could inform us about pre-service teachers’ ability to discriminate measurement 

versus partitive interpretations which have been shown to be a problematic area for 

teachers and students (Flores, 2002; Siebert, 2002).  

 Is conceptual knowledge better than procedural knowledge for practice? We suggest 

that there has to be a balance and that teachers’ SCK ought to exhibit both these 

characteristics. Equally, teachers need to be facile in articulating their relationships. 

 Our previous study (Forrester & Chinnappan, 2010) provided the impetus for this 

project. In that study we examined procedural and conceptual knowledge in the context 

of subtraction and multiplication problems. The current study, however, involved the 

investigation of addition and division problems. This could be seen as a limitation. We 

contend that in both situations, there is a structural similarity (inverse relationships) 

among these operations, both algorithmically and conceptually. 
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