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This paper describes a process in which a practising teacher developed a personal teaching
model for numeracy. Influences included Vigotsky’s Zone of Proximal Development,
Steffe’s counting types, a mathematics education paper which included study of Wright’s
Mathematics Recovery and Burns’ cooperative group teaching, a trial of the Count Me in
Too project with subsequent developments in New Zealand, and an explicit strategy
teaching model derived from the theory of Pirie and Kieren. The teacher uses her teaching
model in a classroom setting. The teacher’s espoused teaching model is compared with its
implementation. Some implications for assisting teachers to construct personal teaching
models are made.

New Zealand participated in The Third International Mathematics and Science Study
(TIMSS). Results relating specifically to New Zealand were presented in a number of
reports (e.g. Garden, 1996, 1997). These reports indicated that the standard of mathematics
learning in New Zealand was below international averages at the age levels tested. One of
the consequences of TIMSS was that, in 1997, the Ministry of Education invited
proposals for the professional development of teachers in teaching mathematics at the year
three level. The successful proposal (Hughes, 1997) in the Auckland area was made on
behalf of the Auckland College of Education (ACE). In its contract proposal was a
requirement that teachers would enrol in an Advanced Studies for Teachers (AST) 300 level
mathematics education paper. In this paper teachers would be expected to interview
students from their own class using an assessment based on the Mathematics Recovery
frameworks (Wright, 1993). The proposal included an approach to professional
development of teachers derived from Guskey (1985). He suggested that “the most
significant changes in teacher attitudes come after they begin using a new practice
successfully and see changes in student learning”. (Guskey, 1985, p. 57). Figure 1 shows
the essence of his model of teacher development. Consequently the AST paper contained
significant elements where teachers were expected to assess and teach children in their own
classrooms. Resulting, in part, from the perceived successful delivery of the AST paper to
175 teachers at ACE, the Ministry of Education instigated a series of New Zealand

National Numeracy projects from 2000 to 2003 (Higgins, 2001, Thomas & Ward 2001,
Thomas & Ward, 2002) involving 8500 teachers.
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Figure 1. A Model of Teacher Change
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The teacher, whose construction and use of a numeracy teaching model is the subject of
this study, was educated in Canada where she was awarded Bachelor of Arts (Hons) and
Bachelor of Education degrees. She taught in Ontario primary schools for two years before
immigrating to New Zealand. While teaching in an Auckland primary school she enrolled in
the AST paper in 1999. Subsequently she was closely involved in the New Zealand
National Numeracy projects. She was, in turn, a lecturer in Mathematics Education at
ACE, an in-class facilitator for the National Numeracy Project, the co-ordinator of the
Numeracy facilitators in the Auckland region, and currently is a senior teacher in a year 3-4
class in an Auckland school. In this study the teacher traces her own development of a
numeracy teaching model over time and applies the model to a lesson in her own classroom.
She is co-author of the paper.

Data Gathering

In a taped interview the teacher was asked to outline the developmental influences on
her teaching in general, and more specifically, the ideas and experiences that influenced the
construction of her personal numeracy teaching model. A transcript was made. Her
references to research on the tape were added to the transcript where these were known.
She was then asked to edit her comments to improve clarity and meaning. This was
followed by a videotaped lesson of the teacher teaching a group of children in her own
classroom where she attempted to apply her strategy teaching model. A transcript of the
actions and words of the students and teacher was made from the videotape. The teacher
was then invited to view the videotape, read the transcript, then add her comments to the
transcript about her observations of the children and her reasons for the teaching decisions
she made.

Data Interpretation

It would have been possible to analyse audiotapes and videotapes in order to infer the
teacher’s intentions and analyse her actions. However, it was felt that a reflective teacher
could explain more convincingly than an observer her own development of a theory of
teaching and the reasons for her actions in an actual classroom setting. Moreover it is
reasonable to assume that an actual teacher’s voice would appeal to practicing teachers
viewing this research.

Results and Discussion

The Construction of a Personal Teaching Model

In an audiotaped interview the teacher recalled important theoretical influences in her
teaching from her work towards a Bachelor of Education degree.

I was highly influenced by constructivist ideas about how learners need to construct their own
meaning. I knew that learning was not just a passive process of absorbing my knowledge. The
children had to be actively involved. I used Vigotsky’s notion of the “Zone of Proximal



Development” to guide me. I found it helpful because it gave me a way of knowing where the
children were now and where they might be with help from me and their social group.

In 1999, while a classroom teacher in New Zealand, the teacher undertook study in an
AST numeracy paper at ACE. The readings for this paper included a handout describing a
method of small group teaching (Burns, 1990).

As a result of my teaching background, I was already sympathetic to small group teaching models.
I felt a great affinity with the teaching and learning models that were demonstrated in the AST
course during the regular part of two and a half hour lectures. The lecturer taught us mathematics as
learners not teachers. I was really influenced by the use of many of Burns’ suggestions. For
example, the lecturer put us in groups of four or five, and set us problems to solve without
providing any solution methods. I was impressed by his use of active listening. During the whole
class sharing phase of any teaching session, I was intrigued by his method of neither confirming
nor denying the problem solutions, nor ever indicating which solution method he thought was the
best.

The teacher began experimenting with these ideas back at her school.

I started creating small groups in my classes and training students in the use of the Burns type of
group rules written on a poster. The rules were, and still are, “get in groups of four; listen to the
task; give everyone a chance to share their strategy; one person talks at time; everyone must be able
to explain each other’s answers; be prepared to share group answers back with the whole class or
larger group; and a rule for myself – don’t offer solution methods to any group and provide
scaffolding to a group only when absolutely needed”.

The teacher reflected on what active listening had done for her teaching.

From the modelling in lectures I took active listening to mean that a teacher could repeat children’s
solution methods without evaluation, criticism, or correction. Of course I thought that scaffolding
was legitimate, that is, the teacher could offer help to those who did not understand another child’s
explanation by modelling it, say, on materials. This model of the teacher as active listener seemed
to fill a gap in my constructivist teaching practices. I had never been certain what the children were
thinking. But by using active listening, I was more confident that I could understand the
conceptions and misconceptions of my children.

The teacher encountered the notion of counting types frameworks in the AST lectures
and course readings (Steffe, von Glasersfeld, Richards, & Cobb, 1983, Wright, 1993).

I immediately liked the idea from Steffe and Wright that children use increasingly sophisticated
counting types. I was used to framework-based language models such as Reading Recovery. So
applying a framework to numeracy appealed to me.

Part of the AST paper requirements was an in-school component in which children
were withdrawn from class. Assessments based on the Mathematics Recovery programme
(Wright, 1993) were modelled by the lecturer. Then, course participants interviewed a
number of children themselves. Subsequently the teacher began using this assessment tool
with her own students with consequent implications for her understanding of their learning
needs.

I knew the methods of assessing I had been using, based on timed pencil and paper tests or
algorithms, were inadequate. Students were being assessed for teaching on the basis of outcome not
thinking. But what was the alternative? Now the counting type assessment gave me a way of
creating groups of like-thinking students which made much more sense to me. And, as far as
student learning went I could see that I was being much more effective in planning for, and aiding
their learning needs.

In 2000 the teacher was a lecturer in Mathematics Education at the Auckland College of
Education, and a facilitator with teachers in classrooms in the New Zealand Count Me In
Too (CMIT) trial. (Thomas & Ward, 2001). The teacher was happy to use the distinction



between knowledge/recall and strategy/process used in the Numeracy Project teacher
material (Hughes, 2002, p. 350) in part due to experiences in 2001 and 2002 modelling and
observing teaching. She felt teachers already effectively used their existing models for
teaching number knowledge.

I observed teachers generally teaching knowledge/recall well through the use of whole class warm
ups, paired games/activities and individual maintenance number work which catered for the different
levels of number learning of the students. And student progress was obvious and measurable.

But this success in knowledge teaching was in marked contrast to the teaching of
number strategies that she observed.

It became clear to me that teachers needed help in teaching strategy development. I found that it was
complex stuff to plan, organise and teach. And in fact we did not know how to do it in a simple
way that teachers could understand and use. We needed to develop a strategy teaching model where
there was no obvious route to its construction. So a few facilitators and lecturers began discussing
this strategy teaching challenge.

She was part of a strategy teaching model that began to emerge.

I was reading and discussing P-K theory (Pirie & Kieran, 1994) with colleagues. It had strong
constructivist connections that appealed to me. And I knew the New Zealand mathematics
curriculum document (MoE, 1992) was, at heart, constructivist, recommending things like having
learners discuss, interpret, make connections and search for their own personal understandings in
mathematics. In particular P-K notions of property noticing and formalising eventually became
Using Properties of Numbers in the New Zealand strategy teaching model (Hughes, 2002).

The teacher felt that a paper in circulation within the mathematics education
department (von Glasersfeld, 1992) was important. Significantly for her von Glasersfeld
wrote:

Mathematics is the result of abstraction from operations on a level on which the sensory or motor
material that provided the occasion for operating is disregarded. In arithmetic this begins with the
abstraction of the concept of number from acts of counting. Such abstractions cannot be given to
students, they have to be made by the students themselves. The teacher, of course, can help by
generating situations that allow or even suggest the abstraction. This is where [materials] can play
an important role, but it would be naive to believe that the move from handling or perceiving
objects to a mathematical abstraction is automatic. The sensory objects, no matter how ingenious
they might be, merely offer an opportunity for actions from which the desired operative concepts
may be abstracted; and one should never forget that the desired abstractions, no matter how trivial
and obvious they might seem to the teacher, are never [obvious] to the novice. (p.6)

The teacher reflected on this comment.

When in classrooms in schools I had observed that year 1 – 3 students spent most of their time
doing mathematics using concrete materials but not going any further. Then, in years 4 – 6,
concrete materials were abandoned. Something was missing. While valuing materials, von
Glasersfeld told me that mathematics was inherently and necessarily abstract. But there was no
obvious bridge to help move students from materials to abstractions.

In 2001 the teacher became an in–class modeller with 70 teachers and the regional co-
ordinator for the New Zealand Numeracy Project in the Auckland region. She was in a
position to trial the strategy teaching model in classrooms and to observe teacher reaction
to its use. By this time the idea of imaging was being discussed and trialled.

By introducing Using Imaging to the strategy teaching model we seemed to have found a sensible,
simple, understandable link from materials to abstraction. The model gave me purpose and focus in
the use of materials and how to move beyond them. And now I had a model which defined Zones
of Proximal Development where I could recognise where each child’s construction was at, and know
how to challenge each of them to reach towards abstractions. For many teachers the strategy



teaching model was a challenge to their current teaching practices. However, after initially
struggling to move beyond the use of materials with their students many of these teachers realised
that their ultimate goal, and success, as a teacher of mathematics was to move students beyond
Using Materials and imaging to the final abstractions.

The teacher returned to a fulltime classroom position in 2002. The teacher summarised
the major components of her current model for strategy teaching with her year 3-4
students.

I now see myself as trying to apply a constructivist style of teaching based on small groups, with
feedback to the larger group. I don’t see myself as the provider of solutions, but as the repeater of
student solutions where I scaffold those children who don’t understand a solution while repeating a
solution method. I apply the strategy teaching model. Then I use it as a way of judging how to
move forward with each learner as I observe the success, or otherwise, of each child at the various
materials, imaging, and abstraction stages.

The Use of a Personal Teaching Model in Classroom Setting

The teacher taught a lesson to a group of students from her year 3-4 class which was
designed to move a group of students from using “counting–on” to using “part-whole”
reasoning. Only 12 minutes of a 40-minute videotape are directly reported because of space
restrictions. This selection attempts to represent fairly the main aspects of the lesson.

The teacher drew the lesson from the teacher material in the New Zealand Numeracy
Projects (MoE, 2003b, p 26). The stated objective for the student’s learning given at the
start of the activity is “I am learning to subtract by splitting numbers into parts instead of
counting down”. The materials needed were a steel board with tens frames drawn on it, pre-
printed tens frames, and a set of magnetic counters.

The teacher had grouped seven children by their strategy stage.

These children were all counting on, which created a group of like thinkers. My intention was to
challenge them to connect to part-whole thinking with problems involving two digits minus a one
digit number.

The teacher organised the rest of the class into working individually, or in small groups,
to practice knowledge/recall.

I had set the other two groups to work quietly and independently of me where they were re-
enforcing their knowledge from a variety of activities involving playing number games in small
groups, working from cards placed around the room in boxes, or practising on worksheets.

The teacher reminded the group of seven children on the mat in front of her of the small
group rules by showing them a poster and reading the rules out loud. Then the teacher
briefly checked their recall of basic addition facts.

I had to check combinations to ten, and the ten plus a digit gives a “teen” number as these are
essential to encourage children to abandon counting down. Most of them had good recall but I was
concerned that a couple had little immediate recall of this required knowledge. But I decided to
keep them in the group despite feeling part-whole thinking would be beyond them on this basic fact
failure alone.

The teacher now showed 14 magnetic counters as ten and four on a metal board with
tens frames drawn on it and said, “I am going to give a problem to think about in your
groups of four or groups of three. Using the ten frame how could you solve: you have 14
chocolates and you eat 6 of them.” A discussion about what to write on the portable



newsprint board occurred, then the teacher wrote 14 – 6 on the board. The children now
split into two groups. The children began discussions in their groups.

I subdivided them into a group of four and a group of three and set them going. I did not provide
any prompts initially for the problem. I listened in and thought the group of three was making
good progress. In the four I could see that Paridnya and James were on task. But Maree and Lewis
were struggling. So I tried to provide a scaffold for those two to prompt part-whole thinking. But
Lewis and Maree still counted backwards. I could not help them connect. Meanwhile, I could see
that Elaine, Isobel, Vaine in the group of three were actively discussing moving the counters in
groups. Paridnya and James were discussing a different strategy of removing the six counters. So
these five were making good progress.

The teacher then clicked her fingers, which was their standard signal for groups to join
together.

At this point I decided to stop the sub-groups and pull the students together in a larger group since
I felt Lewis and Maree were not benefiting from any part-whole interactions. At this point I used
active listening to let a number of students explain their solutions. I set some further similar
problems to be done in their groups. And I could see Lewis and Maree were still not progressing.

The teacher then checked to see that students understood how to construct two digit
numbers greater than 20. She created 24 using counters on tens frames.

Lewis, James and Maree took some time to see the number 24 as being made up of the two tens
and four ones. This alerted me to the fact James was going to have trouble with part-whole
thinking. This was also an indication that these three would not be able to move on to imaging
partitioning effectively. The other four had no trouble. I asked some more similar questions where
the pattern of who understood and who did not continued. Despite this I decided to try to move on
to imaging.

The teacher recorded the problem 24 – 5 on the whiteboard and made the number 24
using the tens frames. She briefly showed the two tens and four ones then hid the counters
from view. The teacher asked, “What I want you to know is 24 by imagining, just by
picturing the counters in our heads. Think about the tens frames in your head, but I’m not
going to show it to you. For this question, what I want you to talk about is what you see
and what you would move.”

I was now pushing them to image if they could. It was clear to me straight away that Elaine, Isobel
and Vaine in the one group along with Paridnya in the other group were imaging the 24 counters as
they were talking animatedly about what 5 counters they would remove.  However, Lewis, Maree
and James were using their fingers as well as grabbing for the tens frames that I had hidden.  They
were not imaging. I asked Maree and Lewis to discuss things with me. They still struggled, and I
thought James was not gaining anything by talking with Paridnya.

The teacher clicked her fingers and pulled the groups together again.

I had heard Vaine successfully discussing what she could image so I decided to have her elaborate
on her thinking for the whole group in one last effort to see if Lewis, Maree or James could follow
part-whole thinking by imaging 24 minus 5.

Vaine said, “Ten over here and ten over here and four over here” as she drew on the
empty tens frame board with her finger. The teacher asked Vaine, “How did you think
about taking five away?” Vaine said, “You take the four and move one away and that
would make 19.” As the student described her thinking she was drawing her finger along the
empty board as if to push away counters.

It was obvious that Vaine was successfully imaging to solve the subtraction problem. Also Isobel,
Elaine and Paridnya seemed able to follow her thinking. But, even when I folded back to Using
Materials on tens frames, Lewis, Maree and James were completely lost. I now thought I should do



more imaging problems with Lewis, Maree or James. But time was running out. So I decided to
push out to larger numbers in the Using Number Properties phase for the sake of Paridnya, Elaine,
Isobel, and Vaine. I could return to Using Materials and Using Imaging with Lewis, Maree, and
James next time.

The teacher said, “Let’s try one last one. No counters, nothing. You can imagine the
numbers if you want but I am going to make the numbers pretty big. What if I made it 63.
Think about not counting back. Think about what you would push away. And you want to
take away four. Just the numbers.” The teacher wrote 63 – 4 on the board, and then told
the students to, “Talk to your group”. The group of three discussed the solution
independently of the teacher. The teacher watched, then interacted with, the group of four.
Then the teacher snapped her fingers, and the two groups gathered together. She asked
Lewis, Paridnya, Vaine, and Elaine to explain how they got their answers.

Lewis counted down as I expected. Each of Paridnya, Vaine, and Elaine basically took away three
from 63 then one more. So they understood abstract part-whole reasoning well. I did not ask Maree,
James, and Isobel to explain but I was confident that I knew what they were thinking from listening
and interacting with them in the smaller groups.

The teacher then described her conclusions from the lesson and stated her future plans
for teaching them.

The last part of the lesson really confirmed what I suspected would happen. Vaine, Elaine, Isobel,
and Paridnya all gave good abstract part-whole explanations of 63 – 4. Obviously I need to follow
up with similar examples in a later lesson to reinforce their thinking. But Maree, James, and Lewis
did not really make it. And I don’t think they are really anywhere near doing so. So I am going to
have to go back to revise their lack of instant recall of basic facts. I will attempt to push them
towards part-whole thinking later, but meanwhile they will remain in their current zone of comfort
where I expand on their ability to use counting methods - for example counting down, skip
counting by five for multiplication problems and so on.

Conclusions

The design of the AST paper included a requirement that teachers involve themselves
in some new classroom practices. In the case of the teacher in the study she experimented
with small group teaching, used active listening, and assessed student thinking against
number frameworks. The teacher reported feeling that she was teaching more effectively
because she felt her students were learning better. She incorporated these new ideas into her
teaching which reflected changes in her beliefs and attitudes. The teacher’s self-described
process of professional development fits well with Guskey’s model (Figure 1). Its success
offers encouragement for the use of this model in mathematics education tertiary study.

In the lesson the teacher’s teaching corresponded closely to her espoused personal
teaching model. The teacher implemented Burns’ group teaching rules effectively. An
impressive feature was she did not bind herself to follow the rules rigorously when the
situation demanded a change. One of the teacher’s rules is that groups should work in
fours. Noting that Maree and Lewis were not benefitting from group discussion she broke
up the group of four in order to try to scaffold the learning of these two students. She
consistently applied active listening in the lesson where she sought children’s solution
methods and offered scaffolding to assist other children in the large group to make
connections. The use of the strategy teaching model in the lesson with its Using Materials,
Using Imaging, and advancing to Using Number Properties provided the teacher with an



effective tool to structure her lesson, and then assess the future learning needs of every
child.

Teachers wanting to improve their teaching practice may well benefit from reading a
study such as this where a teacher’s voice should appear understandable, real, credible, and
accessible. Also teachers might profit from engaging in a similar process of professional
development as this teacher went through, even though most teachers probably would not
be as analytical as she was in reflecting on, and articulating their own practice.

Acknowledgment

Funding for the research came from the Ministry of Education. The opinions expressed
in this paper do not necessarily represent the views of the Ministry.

References
Burns, M. (1990). The Math Solution: Teaching Groups of Four. In N. Davidson, (Ed). Cooperative

Learning in Mathematics. A Handbook for Teachers. Menlo Park CA: Addison–Wesley.
Garden, R. (Ed.) (1996). Mathematics performance of New Zealand form 2 and form 3 students. National

results from New Zealand’s participation in the third international mathematics and science study.
Wellington: Ministry of Education.

Garden, R. (Ed.) (1997). Mathematics & science performance in the middle primary school. Results from
New Zealand’s participation in the third international mathematics and science study. Wellington:
Ministry of Education.

Guskey, T. (1985). Staff development and teacher change. Educational Leadership, 42(7).
Higgins, J. (2001). An evaluation of the year 4-6 numeracy exploration study. Wellington: Ministry of

Education.
Hughes, P. (1997). Mathematics Support for Year Three Students, Contract Proposal. Auckland: Auckland

College of Education. Unpublished document.
Hughes, P. (2002). A model for teaching numeracy strategies. In B. Barton, K. C. Irwin, M. Pfannkuch, &

M. O. Thomas (Eds.) Mathematics in the South Pacific (Proceedings of the 21st Annual Conference of
the Mathematics Education Research Group of Australasia, Auckland, Vol. 1, pp 350-357). Sydney:
MERGA.

MoE (1992). Mathematics in the New Zealand curriculum. Wellington: Ministry of Education.
MoE (2003a). Book 2. The diagnostic interview, numeracy professional development projects 2003.

Wellington: Ministry of Education.
MoE (2003b). Book 5. Teaching addition, subtraction, and place value, numeracy professional development

projects 2003.  Wellington: Ministry of Education.
Pirie, S., & Kieren, T. (1994). Beyond metaphor: Formalising in mathematical understanding within

constructivist environments. For the Learning of Mathematics, 14(1).
Steffe, L., von Glasersfeld, E., Richards, J., & Cobb, P. (1983). Children’s counting types: philosophy,

theory, and application. New York: Paeder.
Thomas, G. & Ward, J. (2001). An evaluation of the Count Me In Too pilot project. Wellington: Ministry

of Education.
Thomas, G. & Ward, J. (2002). An evaluation of the early numeracy project 2001. Wellington: Ministry of

Education.
von Glasersfeld, E. (1992). Aspects of radical constructivism and its educational recommendations. Paper

presented at the ICME-7, Working Group #4, Quebec. Retrieved March 18, 2003 at
http://www.umass.edu/srri/vonGlasersfeld/onlinePapers/html/195.html

Wright, R. (1993). An Application of Methods and Results of a Radical Constructivist Research Program
to Professional Development in Recovery Education. Paper presented at the fifteenth Annual Conference
of the New Zealand Association for Research in Education, Hamilton.


