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Based on cases of classroom events this paper discusses two perspectives on the issue of
teacher informal classroom observation as a means of assessing their students’
understandings. One perspective emphasizes difficulties and obstacles that might be
overcome. The other centres on hearing through as an intrinsic characteristic of what it
means to understand what someone else is saying or doing. The paper concludes with the
suggestion to merge the two perspectives in practice.

The mathematics education community is in the midst of a tremendous attempt to
reform student assessment. Traditional assessment focuses on certifying students’
attainment at the end of a period of instruction, and on classifying or ranking students. In
recent years educators advocate the moving from a sole concentration on summative
assessment toward emphasis on formative assessment, whose main purposes are to
advance students’ learning, and to inform teachers as they make instructional decisions
(Black & Wiliam, 1998, 2000; Clarke, 1997; National Council of Teachers of Mathematics,
1995, 2000; Shepard, 2001). An important characteristic of reform assessment is that
teachers are expected to assess student understanding not only by a separate activity
specifically designed for this purpose. Rather, much of the information on students’
performances and achievement needs to be derived by teachers during the process of
instruction. The view that assessment should be an integral part of instruction, combined
with disappointment from the limited information received by traditional paper-and-pencil
mathematics tests, entails the use of new assessment methods, tools and techniques.

One such tool is informal observation during instruction. It is assumed that observing
and listening to students would enable teachers to respond better to students’ learning
needs, and facilitate teachers’ ability to make informed instructional decisions (National
Council of Teachers of Mathematics, 2000; Shepard, 2001). Several research studies
support this assumption (e.g., Cobb & McClain, 1999; Even & Markovits, 1993; Fennema,
et al., 1996; Goldenberg, 2000; Simon & Schifter, 1991). Still, research suggests that such a
task is extremely difficult for teachers to perform (e.g., Ball, 1997; Coles, 2001; Crespo,
2000; Davis, 1997; Morgan & Watson, 2002; Nicol, 1999; Watson, 2000). These studies
have begun to reveal the complexity associated with listening to students and with
teachers’ attempts to understand what students are saying, showing, feeling and
doing—what Ball (1997) calls to hear students.  

This paper describes two different theoretical perspectives for approaching the
problematic associated with hearing students. One focuses on difficulties or obstacles that
might be overcome; the other centres on hearing through as an intrinsic characteristic of
what it means to understand what someone else is saying or doing. The paper concludes
with pragmatic suggestion for what listening to students and observing them might mean in
practice.



Obstacles to Hearing Students

Making Unplanned Changes

The following episode was observed in a seventh grade algebra lesson (Robinson,
1993). Benny, the class teacher, was a novice teacher in his first year of teaching. Benny

wrote on the board two expressions: 4a+3 and 
3a+6+5a

2
  . Then he asked the students to

substitute a fraction in both expressions:

T:   Substitute a = 
1
2
  .

S1: You get the same result.
T:   Are the algebraic expressions equivalent?
S2: No, because we substituted only one number.
S1: Yes.
S3:  It is impossible to know. We need all the numbers.
S4:  One example is not enough.
And the teacher concludes:
T:   We can conclude – it is difficult to substitute numbers in a complicated expression and therefore we

should find a simpler equivalent expression.
Clearly, Benny ignored the students’ discussion completely. Why did he do so?

Examination of Benny’s typical way of teaching (Robinson, 1993) suggests that Benny
was not able to deviate from his planning of the lesson. He was not at all tuned into hearing
students beyond the level whether they were with him or not. His hearing seems to be
constrained by the fact that he was listening for something rather than to the students’
discussion. Davis (1997) defines this mode of listening evaluative listening. When planning
his teaching Benny used to study the textbook very carefully and to follow it closely.
Analysis of the textbook’s approach indicates that the two expressions that Benny wrote

on the board (4a+3 and 
3a+6+5a

2
  ) were included in a task that was intended to provide

meaning for the all-too-common meaningless requests in algebra lessons to simplify
algebraic expressions. The students were to substitute the same fraction in two equivalent
expressions, one complex and the other simple. Since calculations in the former case were
more complicated than in the latter, the textbook author expected that students would
realize that simplifying expressions is worthwhile, and would thus be motivated to learn to
simplify. Benny, who had planned to follow this line, indeed wrote the two expressions on
the board, but forgot to mention that they are equivalent. Noticing this omission later,
Benny added this information. But instead of just stating the fact, as suggested in the
textbook, he asked: “Are the algebraic expressions equivalent?” This question triggered an
unforeseen debate of this issue among the students. Clearly, the students were not engaged
in the task as had been planned; however, they were engaged, on their own initiative, in a
genuine and important mathematical discussion. But the teacher adhered to his original
plan: “We can conclude – it is difficult to substitute numbers in a complicated expression
and therefore we should find a simpler equivalent expression.” Later, in an interview,
Benny reflected on his teaching: “I prepare my objective and the exercises I want to give
the students, and it is very confusing for me when they suddenly ask something not
according to my planning.”



Because Benny was a novice teacher we may conclude that Benny’ s problem is related
to his lack of experience. It is reasonable to assume that with time, Benny would be able to
hear his students and deviate from his plans to better respond to unexpected class events.

Lacking Knowledge About Common Students’ Conceptions and Their Possible
Sources

The following excerpt is also from Benny’s class. It took place in a lesson that was
conducted a little later in the year, when Benny was teaching his students how to simplify
algebraic expressions (Robinson, 1993). Benny writes the expression 3m+2+2m on the
board and asks,

T:   What does this equal to? Add the numbers separately and add the letters separately.  
       Let us colour the numbers [colours 3m+2+2m]. We get [writes] 5m+2.
S1:  And what now?
S2:  7m.
T:   [Rather surprised] No!  5m+2 does not equal 7m. The rule is “add the numbers
       separately and add the letters separately”. Here is another example: 4a+5-2a+7. We
       colour the numbers [colours 4a+5-2a+7]. What do we get? 2a+12. Let us write the        rule

[dictates]: In an expression in which both numbers and letters appear, we add the numbers separately and add
the letters separately. Repeat out loud.

S’s: [Repeat the rule out loud.]
T:    Let’s take another example: 6x+2+3x+5 = . We add according to the rule and get
       9x+7.
The rest of the lesson is devoted to work on similar exercises. The students continue to

experience difficulties. Towards the end of the lesson the students are working on
simplifying the expression: 3+2b+7.

S1:  12b.
T:    No!
S2:   I got 10+2b. Why isn’t it 12b?
The teacher does not respond to the last question. Did he hear his students? In his

reflection on the lesson Benny explains that he senses there is a problem but he does not
understand its sources; he does not really understand what his students’ difficulties are.
Benny hears that the students have difficulties but he does not hear the nature of these
difficulties. In a study (Tirosh, Even & Robinson, 1998) that investigated teachers’
awareness of students’ tendency to conjoin or finish open expressions (e.g., to write the
expression 2x+3 as 5x or 5), we found that although Benny’s students tended to conjoin or
finish algebraic expressions, he was not aware of this tendency nor of possible sources for
it (e.g., conventions in natural language, expectation that the behaviour of algebraic
expressions be similar to that of arithmetic expressions, the dual nature of mathematical
notations: process and object).

We may conclude that not being familiar with common students’ misconceptions, such
as their tendency to conjoin or finish algebraic expressions, prohibited Benny from hearing
his students. It is reasonable to assume that being an attentive and devoted teacher, Benny
would learn about common students’ misconceptions and then he would be able to hear his
students and better plan and conduct his teaching. This conclusion is supported by findings
related to some of the experienced teachers in the study (Tirosh, Even & Robinson, 1998).



Attributing Value to Students’ Ways of Thinking

 Ahuva had 20 years of teaching experience in elementary school, 12 of them in fifth
grade. At the year of the study (Goldenberg, 2000) she participated in a six-month in-
service workshop that focused on the use of portfolio as a means for student assessment.
One of the tasks she discussed with the workshop participants was Ron’s solution to the

following problem: 
5

3
 of a number is 12. Calculate the number. Explain your solution.

Ahuva admitted that she expected her students to solve the problem the way they have

learned at class, 
  
12

3

5

12 5

3
20‚ = =

*
. But, because of the emphasis during the workshop

on different solutions, she was looking for them in her students’ answers. Ahuva explained
that she had problems with Ron’s solution: 12 * 2 = 24

          24 ÷ 6 = 4
          24 – 4 = 20
She said: “He reached a correct answer but I didn’t understand what he did. It didn’t

seem right”. Ahuva explained that Ron is an average-good student, who usually has
difficulties with homework. She decided to mark Ron’s solution as wrong. After several
days, Ron came to Ahuva and told her that he checked the solution with his father, and
they think that his solution is correct. Ahuva told Ron that she would check it and decided
to ask the workshop participants to help her. The teachers tried to understand Ron’s way
of thinking and reached the conclusion that it is indeed correct. But Ahuva was not
convinced. She did not believe that Ron really solved it the way the workshop teachers
suggested, because she thought their interpretation was too complicated for him. She

therefore embraced the suggestion to interview Ron. Ron explained to her that if 5
3

 is 12

then 24 is 5

6
 and this is more than one whole. Then he calculated the value of 5

1
,  24 : 6 =

4. From 24 he subtracted the value of 5
1

, 24 – 4 = 20, reaching the correct answer of 20.

Ahuva’s case suggests that in order for teachers to hear their students, teachers need to
be tuned to do this. They need to believe that there is something to hear and to be aware of
the fallibility of their sense making. Teachers need to adopt a mode of listening, which
Davis (1997) terms as interpretive listening. It is reasonable to assume that with the
support of adequate professional development, such as the workshop in which Ahuva
participated, Ahuva would become more tuned to hear students and would attribute value
to their ways of thinking.

Hearing Through…

The analysis of the cases above focused on identifying difficulties or obstacles to
hearing students and on suggesting ways to overcome these obstacles. We now take a
different approach to the nature of hearing students and to the complexity of understanding
what students are saying and doing. To do this we use the case of Ruth (Wallach & Even,
2002) – an elementary school teacher with 11 years of teaching experience. As part of the



requirements in an in-service workshop in which she participated, Ruth observed two of
her fourth grade students – Sigal and Ore – solve the following problem (see Figure 1):
“Because the number 15 is odd and the number 4 is even, then it’s impossible” was Sigal
and Ore’s immediate solution. What might this mean? There are various possible
interpretations. One is that the girls know how to solve this problem by removing four
players from the entire team, dividing the remaining players into two equally sized groups,
and finally, adding the four players to one of the groups. They understand that in this
specific case the division is not possible because 15 is odd, and when they subtract 4 from
15 the difference is 11, which is an odd number, and an odd number is not divisible by 2. A
different viable interpretation is that the girls understand the generalization of this method
– that the division is possible only when the number of players is even. Because only in
this case the removal of four players would leave an even number of players, which can
then be divided into two equally sized groups. Another possible interpretation is that the
girls use verbal hints from the text. They know that the required division is impossible
because this is stated in the text: “The task in front of you does not have a solution”. They
also know and recognize that 15 is odd and that 4 is even. So they link these two pieces of
information, and without any logical argument state that “Because the number 15 is odd
and the number 4 is even, then it’s impossible”. Of course, there may be other possible
interpretations.

*********************************************************************
The Rishonim school team players meet for practice once a week. The players stand in

line according to the numbers on their shirts. Each week their coach divides them into two
groups differently.

The task that you are presented with does not have a solution:
Divide the 15 children in the line into two groups, so that in one group there are 4

players less than in the other group.

Explain why there is not such a division __________

********************************************************************
Figure 1. The “Shirts and Numbers” problem.

What did Ruth hear when the girls said, “Because the number 15 is odd and the number
4 is even, then it’s impossible”? When asked to describe how the students solved the
problem, Ruth recounted their explanation as “… If you take away an even number from
an odd number, then you are left with an odd number, which you cannot divide by 2”. And
she explains, “They said: ‘Oh, for sure it’s impossible. Odd minus even, it’s impossible to
divide it by 2’”. Obviously, Ruth hears things that were not said by the students—she
over-hears them.



Why does a teacher hear what was not said or done by the students? Why does she
mis-hear what was said or done by them? Hearing students, like any other kind of
understanding, cannot be an accurate reflection of what actually was said or done. Teachers
hear students through various factors, such as, the teachers’ own knowledge of
mathematics, their conceptions of the solution of the problem at stake, their beliefs about
the nature of mathematics learning and knowing, their understandings of the nature of
mathematics teaching, their dispositions toward the teacher’s role, their feelings about their
students, expectations of their students, the context in which the hearing takes place, and
so on.

To illustrate this let us look at Ruth’s own solution to the problem. At the workshop,
before presenting the problem to her students, Ruth solved the problem by subtracting 4
from 15 and receiving 11. Then she stated that the division of the result by 2 does not give
a whole number, which means that the problem has no solution. Ruth also created a short
version of this solution: “15 is odd and 4 is even. It is not possible to divide 11 by 2”. And
then she claimed that “15 is odd and 4 is even” is enough as it actually represents the more
elaborate solution. Thus, it is not surprising that when later the girls stated: “Because the
number 15 is odd and the number 4 is even, then it’s impossible”, Ruth over-hears them
saying: “… If you take away an even number from an odd number, then you are left with
an odd number, which you cannot divide by 2”.

Obviously, it is not only Ruth’s own conception of the solution to the problem that
contributed to her over-hearing what Sigal and Ore said. Analysis of Ruth’s concern for her
students’ success, Ruth’s view of knowledge use, Ruth’s acquaintance and familiarity with
Sigal and Ore, and the context in which Ruth’s interpretation of the students’ work took
place (Wallach & Even, 2002) show how the interactions of various personal factors
influenced the nature of Ruth’s hearing of the two students.

Hearing Students: Deficient Versus Hearing Through

When a teacher practice does not comply with theoretical expectations, we often
conceive the situation as if we ought to identify the difficulties or obstacles that interfere
with the application of the theory. We assume that teachers have some deficiencies; that
they lack essential knowledge and skills. We presume that the problem can be fixed and
suggest ways to overcome these obstacles, usually by teaching teachers the required
missing knowledge and skills. This perspective frames the analyses of the three excerpts
from Benny’s and Ahuva’s classes presented in this paper. Each analysis revealed a
different teacher deficiency. One case shows a novice teacher who finds it overwhelming to
pay attention to students’ unexpected discussion. Another case presents the same teacher
having difficulties to hear his students because he was not familiar with common students’
conceptions and ways of learning in algebra. The third case exhibits an experienced teacher
who, at first, did not try to understand how her student solved a problem because she did
not expect him to come up with an original solution. All these problems have the potential
to be fixed. With more teaching experience and participation in adequate formal and
informal professional development activities, Benny may learn to be more open to
unexpected events in the classroom. He may also learn about students’ common



misconceptions. Ahuva may learn to attribute more value to original students’ solutions
and to pay attention to their processes of solving problems.   

 But Ruth’s case implies a completely different perspective to hearing students.
Instead of looking for obstacles that could be overcome, and paying attention to what
teachers do not – for example, do not listen to students, do not change their plans, do not
know about students’ common conceptions, do not understand the mathematics – Ruth’s
case suggests that teachers always hear through various personal factors; that it is
unrealistic to expect an accurate teacher understanding of what students are saying and
doing. Findings of several other studies support the adequacy of this perspective that
recognizes the intrinsic nature of hearing students as hearing through. Ball (1997) shows,
for example, how the teacher’s own ways of understanding the subject matter and her
commitment to her students influence her hearing her students. Morgan and Watson (2002)
show that when teachers assess students’ mathematical performance they rely on their
personal resources. For example, on their personal knowledge of mathematics and the
curriculum, on their feelings toward mathematics based on their personal mathematics
history, on their expectations about how mathematical knowledge can be communicated,
and on their expectations of students and classrooms in general, and of individual students.
They further show how different teachers interpret similar student work differently.

Hearing through is not something that could be overcome. Rather, it is a fundamental
characteristic of one person’s understanding of what another person is saying, doing, and
feeling. Thus, hearing students is always influenced by the teacher’s knowledge,
understandings, beliefs and dispositions regarding mathematics in general and the specific
piece of mathematics being dealt with, learning and teaching mathematics in general and the
specific piece of mathematics with the specific students involved, the teacher role in general
and in the specific context, and so forth. Current rhetoric that advocates reform formative
assessment does not seem to pay attention to this aspect. Understanding what students are
doing and saying is usually presented as unproblematic. However, as researchers in
mathematics education we know that this is not so; that understanding what students are
doing and saying is not an easy task, nor certain.

Conclusion

A simplistic conclusion from the above might be that if we can never truly understand
what another person is saying and doing, then we should not expect teachers to conduct
formative assessment as an integral part of regular instruction. This is not at all what we
propose to conclude here. Nor do we suggest that teachers cannot improve their ability to
understand what their students are doing and saying. Our main suggestion calls for
practically merging the two perspectives presented in this paper. Conducting informal
observations and listening to students during regular instruction is an important teaching
skill. As indicated earlier, teachers can learn to value and to aim at understanding their
students’ conceptions and ways of thinking and to become better in doing that. At the
same time, understanding what students are saying and doing should neither be regarded as
an unproblematic task nor as something that can be certain. Furthermore, although the
research mentioned above provides important information on this issue, more research is



needed to better understand the interrelations among teacher attention to students’ talk and
actions, the nature of hearing students (i.e., hearing through), and students’ learning.
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