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Perception of the mathematics classroom as an arena in which there are various
opportunities to learn mathematics leads to a fine-grained focus on the structure of
mathematical tasks. Each mathematical task affords engagement with mathematics in
certain ways. Variation within a task is a major factor influencing learning.

I was teaching a year 9 (13 year-olds) all-attainment1 class.  They had been working on
this task:

On a coordinate grid you are only allowed to move to the right or upwards. You can do this in any
order you like. How may routes are there from the origin to the point (1,1)?  How many routes to
the points (1,2), (2,1), (1,3) , and so on…..?

After about ten minutes I gathered all the students around the board and asked them
what they had found. Silently at the back of the group sat Paul, who had been described to
me as having special needs. When he had entered school he could not talk, and still at 13 he
could neither read nor write. After several students had described how they had counted
routes systematically, and deduced a sort of symmetry emerging, I challenged them to find
a method which allowed them to work out how many routes there would be to get to any
point, for example (6,7). Paul said immediately ‘if I knew how many it would take to get to
(5,7) and (6,6) I could add them to get (6,7)’.  This reply would have been a pleasant
surprise from any student, but from Paul it was doubly so because it was his first utterance
in such a group. This was a turning point for me as a teacher, and for him as a learner.  M y
expectations of his mathematics were biased by what I had been told, and he was able to
grasp spatial situations with an abnormally skilful level of generality and structure.2 I
would have to work on my expectations and Paul would have to work on mathematics
through spatial representations.

Shortly after this lesson I began to wonder about how teachers make judgments about
their pupils’ mathematics, and did some research about this (Watson, 1999). I found that
teachers seemed to have no qualms about saying that their judgments came from ‘knowing
the child’ or ‘gut feeling’ or ‘professional judgment’. The latter phrase seemed to mean
‘experienced judgment’.  One of the 30 teachers I interviewed noticed, as she was talking to
me, that she had inadequate strategies in place to ensure her judgments were fair. She
realised that she depended on seeing certain facial expressions, but that many of her
students, being young Muslim women, would keep their faces down and she would never
see their expressions. As a result of this research (of which the observations above are only
a glimpse) I drew the sad conclusion that, even with teachers’ judgments contributing
towards high-stakes assessment decisions, there was a lack of serious monitoring and
professionalism about their impressions of students.



Construction of Types of Learner

This was not new of course.  If there is a label around, such as ‘low attainer’, then
teachers, schools, classmates and even parents will act together to apply that label to
particular individuals (McDermott, 1993).  The existence of the label acquires people to fit
it.  Similarly, the label ‘high achiever’ will cast around looking for students to fit.  Nash
(1976), Blease (1983), and others found that teacher expectations create self-fulfilling
prophecies.

Atweh and Cooper (1995) show clearly how that can happen, by demonstrating how
gendering of mathematics achievement can be created by many aspects of classroom
practice.  In a girls’ school, a teacher acted as if mathematics was an irritation to be
tolerated within a general discourse of social events and relationships. Yet she retained the
role of mathematics authority, being in sole charge of mathematical warrants. The students
in her class had plenty of opportunity to learn that mathematics was not really important,
was rather random, and was only understandable by experts. They had few opportunities
to learn the extent of their own capabilities for acting mathematically.

The students could, of course, have rebelled and set up their own alternative discourse.
In many classrooms there are some mutterers who may be rejecting the curriculum, but
who may merely be setting up an alternative way to see mathematics and have not been
enculturated to behave in the way the teacher intends. Houssart (2001) identifies a group of
year 6 boys who have a private enquiry system going on at the back of a classroom, in
which they answer the teacher’s questions rapidly sotto voce, write little, and call out
challenges to the teacher. Needless to say, they are on the edge of becoming alienated by
school mathematics.  

I find Zevenbergen’s analysis of the construction of social difference in mathematics
classrooms which theorises these phenomena in terms of linguistic capital quite persuasive
(e.g. 1998). To appeal to the teacher a student has to use certain forms of language and
behaviour, and she can only use appropriate forms of classroom discourse if she has had
opportunity to acquire them, and encouragement to use them. Once having used them, a
student needs to have that use recognised and validated. At any stage of this process
teacher preference and bias can come into play to distinguish, fairly or not, between those
that ‘fit’ and those that do not.  Norton, McRobbie and Cooper (2002) write about five
teachers who use explanatory or investigative methods with ‘able’ students and ‘show and
tell’ with ‘less able’, presumably because the ‘less able’ are less able to convince the
teacher that they can participate in more sophisticated forms of mathematical interaction.
Those who fail to adopt such forms in early opportunities therefore get fewer
opportunities to exercise them subsequently.

Wherever students are segregated according to some notion of ability for mathematics
there are similar constructions at work. The teacher constructs some learners as deficient
and offers fewer opportunities to learn. When teachers use the phrase ‘less able’ one might
ask what exactly it is that these students are less able to do. Often what is seen as lacking is
a skill or behaviour which can be taught, learnt, or encouraged, or which the student already
has in some other arena but has not used in mathematics. Opportunities to learn new
behaviours, or to use what one already knows in other contexts, can open up opportunities
to learn mathematics. In classrooms such as those discussed above, opportunity to learn is



limited by the teachers’ construction of mathematics, of mathematics discourse, and of
learner-types.

Opportunities in Classrooms

Social, cultural, and linguistic lenses are useful in answering the question ‘what do
learners have the opportunity to learn?’ because part of what they learn is what is
acceptable in mathematics lessons, both in terms of behaviour and also in terms of their
relationship with mathematics. These are becoming well-worked seams in mathematics
education and appear to explain the behaviour of certain groups, certain classrooms and
some individual responses. Do students act out what the teacher and textbook say, and
have this validated by the same authorities? Or can students participate in the construction
and validation of mathematical meaning, and what would this mean?

Individual Learners as Negotiators of Meaning

A common view of learning mathematics is that meaning should be negotiated.  I want
to distinguish between meaning being negotiable and meaning being negotiated.
Mathematics is not negotiable because it has to have internal coherence and validation;
however mathematics comes into being it has to be a system with these characteristics.
Anyone can validate a statement as mathematical, but they have to show it is valid within
the terms of mathematics.

If we want to claim, as some argumentative people do, that 2 and 2 could make 5 some
day, then we cannot use the word ‘plus’, we would have to invent a new word.  It would
be entirely possible to define an arithmetic in which 2 * 2 = 5, but we would need other
examples in order to grasp its structure. And it might be quite fun to work out what else
would have to be true, and then to test various numbers and operations and features of the
structure which then unfolded.  Negotiated meaning and negotiation are legitimate features
of maths classrooms. It is not too fanciful to imagine a classroom in which students are
constructing this new arithmetic with students and teachers providing test cases and
counterexamples and making up new language to describe what is found. But the role of the
test cases and counter-examples is not negotiable because an essential feature of
mathematics is its own internal validity.3

Similarly the derivative of x-squared with respect to x is 2x … nothing negotiable here
either. Yet we may have to negotiate with students who think it is 2x + k, (as indeed some
do), starting from the recognition that something is being thought – but what?  How would
we continue with such a negotiation?  A teacher could then ask for the derivative of x2+kx
with respect to x?  The presentation of a possible case for conflict is much more than an
attempt to enculturate the student into conventional understandings, or to extend the
student’s experience of a particular discourse, it is an induction into an internal validity of
mathematics by offering the student an opportunity to rethink and restructure existing
assumptions and understandings, or at the very least to realise that there is a problem. By
offering a very particular example the teacher informs the negotiation not from finding out
what the student understands, not from making a judgment about what the student can
handle, but by giving the learner the responsibility to sort it out for herself, given enough



information and experience. The learner has an opportunity to learn, or at least to recognise
that something has to be thought about some more.

The three dimensions of mathematics teaching identified by Holton and Thomas (2001,
p.87), cognitive, metacognitive, and affective, can all be seen as manipulable in order to
provide different opportunities. Lessons which explicitly pivot around negotiation do not
only attend to the metacognitive and affective aspects of mathematics lessons but also can
be organised to be cognitively powerful. In classrooms where students actively negotiate
meaning, the teacher’s role is to structure the content of such negotiation with examples,
counter-examples, or by encouraging the development of these, so that what is eventually
learnt is coherent and valid, but also to structure the negotiation process itself so that it is
mathematical, by which I mean that it is based on exemplification, generalisation,
conjecture, justification, and so on.

Cognitive Opportunity

By focusing on cognitive opportunities to learn I look at students as being similar,
rather than different, because as much can be gained from assuming similarity as by trying
to explain, find out about, understand and take account of difference.

In one of the lessons described in Atweh and Cooper (1995 p.302), students were
presented with an equation (k + 5 = 9) and told that the purpose was to find the value of k.

The teacher states that ‘k is a mystery number’ and asks ‘who knows what to do?’
The learner, on the other hand, looks at the example and knows that k has to be 4, it is not
a mystery. The learner can also can give a reason like ‘because 4 plus 5 is 9’ and therefore
has no idea what ‘who knows what to do?’ can possibly mean. The teacher probably
wants students to construct a method, a personal set of instructions, a way of seeing a
solution which will work both for similar cases, and more complex cases. For the learner,
this example offers little opportunity to learn meaningful mathematics because there is no
reason to engage with what the teacher is doing; there is nothing puzzling about the
example. It is not just that the representation is algebraic, (although that would alienate
students like Paul), or that the teacher has not used forms of interaction which engage all
students, or even that this equation appears like magic from nowhere – it is that there is
nothing to learn for any student except those who take the way the teacher sees
mathematics on trust, and trust in this classroom was fortunately abundant. The teacher,
by creating a participative atmosphere, overcame the potential meaninglessness of the task.
However, the class consisted of students who were aspiring to university, so were already
attuned to suspending everyday knowledge in order to function in school.

The teacher thought the task was to learn a method to find the value of k, but, as
Christiansen and Walther (1986) point out, the activity of the learner is not necessarily the
same as the task the teacher imagines setting.

Contrast the example above to this sequence:

k + 7 = 11

k + 6 = 10

k + 5 = 9



The sequence draws attention to some changes; the only thing which stays the same is
the letter k. It stays the same in a rather dominant way, being at the front of each line. Thus
the changes in the numbers seem obviously not random.  A large majority of people would
be able to say what the next line could be, and what the previous line could be, in order to
retain the pattern. Extension of this sequence is this manner could lead to k + 0 = 4 or
onwards to negative numbers. If attention shifts from going with the grain of this list, up
and down, to looking across the grain at underlying structure, it would be a small shift to
produce k + n = n + 4. The value of k is still not a mystery, so there is still no reason to
learn how to find k = 4, but by the nature of changes and constraints there are things to
learn about structures relating to the statement “k = 4”.  Students could produce their own
similar sequences related to “k = 3”. It may even be possible to set up a new sequence
based on something harder, such as m – 7 = 156, and devise instructions to solve it based
on the experience of working with similar structures in an exploratory way. The constraints
on variety in this approach can lead to powerful recognition of patterns which easily
become rules for engagement with other examples.

But to be courageous enough to try this approach instead of ‘show and tell’, or even
instead of ‘explain and do’, we have to believe something about learners’ similarities. This
example depends on the general propensity to spot and use patterns, and to be able to say
something about habits, using the patterns as raw material for mathematics, and thus to
make some form of general statement, which someone, the teacher perhaps, then expresses
in symbols. Furthermore, what is written is a spatial pattern of symbols, not words, so is
more, rather than less, accessible to language-deprived students. What is written on the
board does not require commentary, so anyone who has been daydreaming can re-enter the
interaction and make some sense of what has gone on. The entire problem can also be cast
as a sequence of graphical or diagrammatic representations so that a student like Paul can
have access to it, and other students can relate the different representations to each other at
an extra level of understanding.

Consider this exercise which is supposed to be about ratio and was set by a teacher in
one of David Clarke’s classroom videos (see Lerman, 2001):

1. Reduce to simplest term

(a)        12
4

(b)          12
36

(c)         300
240

(d)         5 : 5

(e)        ab : ab

(g)        2 4
1

: 1

(h)         b
ab

3
6



There are so many different things one could focus on here that it is tempting to give
up trying to make sense of the variety and say ‘every question has pairs of numbers to
cancel down’ without any underlying sense of meaning. In fact, this becomes an exercise in
doing cancelling, not for learning more about ratio. In order to learn something about ratio,
one could open the work up for whole class discussion and ask what are the similarities and
differences between the questions, or what sort of situations would lead to such
statements, or how one could represent the different statements. As it stands, this exercise
has the potential to exacerbate differences in learning. There is nothing wrong with setting
tasks which have a variety of responses; such tasks can promote participation, reduce risk,
and encourage exploration. But the demands and effects of testing make this exercise an
arena for potential exclusion of some students. They are supposed to learn something
about ratio from it - but what?  There are too many things to learn and none of them are
developed.

Opening the task up through whole class discussion of the meaning of the various
types of ratio would certainly produce clearer opportunities to learn, but so also does
closing it down even more.

Consider these examples of relationships:

21 : 21;  6 : 6; 35 : 35

In these three ratios there is something trivial to notice, which is that in each example
the numbers are equal, but they are also examples of a generalisation which appeared as (e)
in the exercise above, ab : ab. By offering a list of such pairs, learners are being encouraged
to construct for themselves the generality that ab : ab reduces to 1:1, and they can do that
either by dividing by a then b, or b then a, or by ab. Suddenly an apparently trivial
question becomes an arena for generalisation and for an articulation of a result which
depends on the Fundamental Theorem of Arithmetic.4 The exercise becomes much richer
than before, still gives practice in cancelling, and promotes mathematical thinking as a
bonus. Other sequences might extend students’ understanding of ratio structures towards
some complexity, such as: ab:a2b; pn:pm; pk/pl: pm/pn , and so on.

All tasks offer cognitive opportunity, we know that learners construct their own
meanings whatever is offered, but tasks can be structured so that useful generalisation is
more likely – there is more opportunity to make mathematical meaning. Once this is done,
differences in learning due to other factors begin to fall away because all that has to be
discerned is sameness and difference.

What Is There to Generalise?

If I see things as very different my tendency is to categorise, not to generalise.  If I am
forced to generalise then I may do so wildly, unhelpfully or inappropriately. For example,
imagine being asked to generalise a blue bicycle, a blue teddy bear, and a pair of blue gloves.
Perhaps ‘blue’ is the generalisation required, perhaps they all belong to one person,
perhaps they are all lost property … who knows? If I do not know why I am being asked
to generalise, how should I proceed? Another problem occurs when there is so much
variation that students generalise differently. Imagine a supermarket with the goods
categorised by colour because that is the most immediately obvious feature to someone, or
by package size because that is most obvious for someone else. Similarly, what seems to a



teacher to be a set of examples about ratio appears to the learner to be a set of examples
about factorisation or cancelling. We naturally generalise when things seem to have a strong
connection, not when they seem to us to be very different. If things are very different, we
naturally tend to categorise rather than generalise, just as we do when learning and using
language. So by offering a wide variety to students we exacerbate differences since they will
want to categorise rather than generalise, and they will choose from a range of foci
according to previous experience, knowledge, mood and immediate perception. If we offer
little variety it is more likely they will make similar generalisations. If we offer no variety
there is nothing to notice, nothing to learn. The similarity among learners on which I base
these observations is their similar propensities to look for pattern, to generalise, and to
categorise. Opportunity to learn is focused and refined by controlling the variation in what
is offered so that useful generalisation is likely to arise from students’ normal thinking
processes.

The organisation of the school curriculum requires that the more complex the
mathematics gets, the faster we expect students to generalise. They generalise addition and
subtraction over a couple of years, but we expect them to generalise about trigonometry
over a couple of weeks.

Learners Perceiving Opportunities for Choice

Analysing mathematical tasks in terms of the dimensions of variation they offer
learners can explain some aspects of students’ behaviour. For example, an experienced
teacher, Sara, had chosen a tasksheet from a published collection to help her low-achieving
students engage with algebraic representation of patterns.  Students were instructed to
create a repeating pattern by colouring a line of squares and then to describe their pattern
by substituting letters for the colours: a,a,b,a,a,b … , and so on. To her frustration, the
majority of students spent the lesson choosing their colours and colouring squares very
carefully.

There are several ways to explain this unsurprising response. You could say the
students had been used to being given meaningless mundane tasks by their previous
teacher, so repeated old habits, or that the algebra was rather frightening and they were
avoiding it, or that they were exhibiting learned helplessness in the face of a challenge
(Peterson, Maier, & Seligman, 1995). All of these might be true. Analysis of the
dimensions of variation was enlightening, because the first statement on the tasksheet was
‘choose two colours’. Since this was the first choice offered, and the first dimension of
variation, this was the one they focused on, for whatever reason. To get them to focus on
algebra, it should have been the algebraic representations they were invited to choose and
vary. A restructuring of the task to offer different algebraic patterns as a first dimension of
variation, worked much better:

Using p and q, make a repeating pattern of letters in a line.  Let p stand for white and q for black
and represent your pattern as a line of squares…… Do at least 5 patterns.

This formulation forces students to make the letter pattern immediately, and to use the
colours (without choice) later to illustrate it. The pattern becomes the generator for
something more visual and attractive, rather than the reverse. Students in another class who
were offered this reformulated task spent more time working with letters, where the



choices they made related directly to the mathematics of the task, and much less time
colouring.5 Opportunity to spend time on irrelevant variations was reduced.

Dimensions of Variation

My development of the use of dimension of variation as a tool for analysing both tasks
and student responses owes much to others. An early version of the English National
Curriculum for Mathematics included some Non-Statutory Guidance (NNC, 1989) which
gave advice for turning closed questions into open questions, and Sullivan and Clarke
(1991) provide some further ideas and theoretical support for this kind of approach. More
recently, Prestage and Perks (2001) have developed a wide range of generic methods for
adapting tasks in an effort to help teachers use textbooks imaginatively. While writing
Questions and Prompts I became dissatisfied with the common distinction between open
and closed questions (Watson & Mason, 1998). It became clear that what was important
about tasks was not the openness of the question, but the opportunities it offered the
learner to adapt, extend, and refine a personal understanding of the concept. Sometimes a
closed question would do this better than an open one, and this could depend on many
cognitive, metacognitive, affective, social, and cultural factors. Often the nature of
mathematical relationships directs the choice. In an example given above, the closed
question ‘what is the derivative of … ?’ is helpful in indicating a contradiction without
having to tell the student they are wrong; the authority rests within the mathematics.

Marton sees learning as the discernment of variation in events which occur almost
simultaneously and Marton and Booth (1997) use dimensions of variation as a way of
looking at the different learning outcomes of similar teaching situations. Runesson (2001)
has developed this view to explain differences in mathematics lessons which, while being
planned together, turned out to be very different lessons in practice. Two teachers co-
planned a lesson on fractions of a number; in practice one teacher offered students various
fractions of various quantities while the other offered the same fractions of various
quantities. The first teacher was offering several dimensions of variation, while the second
was offering one, namely the size of the ‘unit’. We have extended this idea elsewhere to
recognise that learners constructing their own examples have their own perceptions of what
dimensions of variation are possible for a concept, and what range of change they allow
themselves along each dimension (Watson & Mason, forthcoming).

It may be that some mathematical topics lend themselves to this kind of analysis more
easily than others. Groves and Doig (2002) offer videos of two lessons in which there are
many contrasts. In one lesson, students are arranged to stand along a straight line and throw
rings over a pole a little distance away from the line. The class then discusses how
easy/hard it is to do this, and distances are ‘measured’ and compared using tape. They
conjecture that the way to make the game fair would be to stand in a curve which turns out
to be a circle. In the other lesson, students are tossing three coins and recording their
results, and they end up having a rather inconclusive discussion about the different results
they found. There were many features in these lessons which could be contrasted, but the
one which stands out for me is the different nature of the tasks. In the first, the dimension
of variation was the distance from the point. This was enacted by students, represented by
string, and made the focus for discussion. No one in the lesson, or observing, could fail to



notice that the lesson was about distance from the point – there was little else going on.  In
the second task, there were variations in numbers of trials, methods of throwing, ways of
recording, and ways of comparing results.  Any teacher observing this would have known
exactly that the lesson was about probability, but for many students it might have been
mystifying.

I used to claim that the variety of responses and kinds of learning which would take
place in a lesson such as the second were valuable (Watson, 1988). Some students would be
learning about ways of recording, others about fractions, others about how to work
together, others about how to avoid working, and so on.  Thus each student is free to
construct their own understanding of the lesson. Then I realised that without intervention
some might only ever learn about ways of recording, and some might only ever learn about
ways to work together, and only a few might learn about experimental probability. My role
as a teacher was to narrow the range of what it was possible to learn, to discern as varying,
in what I offered disparate students and thus increase the opportunity to learn appropriate
mathematics for as many students as possible, while making sure that they all had access to
the patterns under consideration.

Identification of dimensions of variation is a tool which extends to every level of
classroom practice.  I can use it to question the effectiveness of the ratio exercise, or the
algebra task, or the throwing lesson, or the probability lesson, and I can use it to explain
what students are discerning when they respond in unexpected and unintended ways. I can
use it to theorise similarities in learning behaviour without having to adopt purely
cognitivist or behaviourist approaches. Cultural and historical differences may lead learners
to see different dimensions of variation when there are several around, and to make
different extensions from those they see, but the fewer there are, the more likely it is that
they will notice the same variations, even if what they do as a result varies. Thus good
tasks can be planned by starting from mathematical structure, growing outwards, as it were,
to recognise and engage cultural diversity.

Affordances and Constraints

I shall now return to a socio-cultural perspective in order to see how this approach fits
with the idea of a classroom as an arena in which the identities of learners develop. Greeno
(1994; 1998) applies Gibson’s articulation of social settings as structured by affordances,
constraints, and attunements. Classrooms have the potential to be places of the exercise of
power, of language, of personal success or failure, of working alone or with others, of
working on mathematics or working on carving initials on a desk. These affordances are
constrained in some way, by tools, rules, custom, language, power, so that the actual
possibilities are a subset of what might be possible. Each individual brings their own
attunements into this arena which influence perception, recognition, responses, and thus
affect the whole setting. There is a complex interplay between what could be possible,
what is possible, and what is seen as possible.

This analytical frame can operate at several levels. It offers a lens with which to
examine institutions, classrooms, individual lessons, and one-to-one interactions. It also
offers a lens through which to view the nature of tasks and the activity which ensues. A
mathematical topic provides an arena which affords learning, constraints limit the variation



which can be perceived, and learners bring attunements which include their capacity to
categorise and generalise.

Thus the design of the mathematical task is a crucial factor in providing opportunity to
learn. By limiting variation to the feature on which we hope students will focus, and
inviting conjecture and generalisation, we can construct (and reconstruct) learners as
mathematical thinkers by using the thinking skills they naturally possess to construct
mathematical meaning.
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1 I use this phrase instead of ‘mixed-ability’ in order to avoid the notion of ‘ability’ as being fixed.
2 I have since learnt that the ability to grasp spatial structures rapidly as complete objects is a special
strength of some dyslexic people (ref. Gift of Dyslexia..ref)
3 I am aware that some philosophers could question this. Nevertheless we behave, and expect students to
behave, ‘as if’ it has internal validity, and I would rather the authority rested within a shared understanding
of mathematical structure than in the offices of the examination authorities. If there were no internal validity
I find it hard to see what place mathematics could have in education.
4 The Fundamental Theorem of Arithmetic states that there is a unique prime factorisation of every number.
Thus it follows that one can divide it exactly by a sequence of its prime factors in any order until you reach
unity. If the prime factorisation were not unique, then dividing by a may not leave you with something you
can divide by b, and vice versa.
5 Whether they were actually doing algebra is another question, because this formulation clearly exposes the
fact that the letters here do not represent numbers.


