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This paper reports developments Perry and Howard (1994, p. 487) 
that have taken place in an document the considerable support given 
ongoing research project since last to the use of concrete materials over 
year's MERGA Conference. Data recent decades. The concrete analogies 
from two more experimental design under investigation in this study are 
stages have been examined. among those recommended in the N.S.W. 
Clarification of the role of concrete Years 7 and 8 Mathematics Syllabus 
analogies to strengthen which 'recognises the importance of the 
understanding of arithmetic use of concrete materials as many students 
structures prior to the introduction in Years 7 and 8 have not yet reached a 
of associated algebraic concepts level of abstract thinking in 
has led to the revision of some mathematics' (1988, p. xii). The 
proposed teaching programs. analogies are explained in Quinlan, Low, 
Ff!,rther data are to be collected Sawyer and White (1993). 
from 22 classes this year. A means Biggs (1992) noted that programs prove 
of measuring preferred learning to be successful when they include such 
styles has been developed. things as group work, one-to-one 

interaction between student and tutor, 
Relevant Research Perspectives problem-solving emphases, and when: 
We have much to learn about the 'abstract, conceptual learning is built on 
teaching and learning of algebra. As lower-level learning, particularly where . 
Wheeler (1989, p. 280) points out, 'in spite a variety of hands-on experiences are 
of the many decades during which it used [and] formally taught knowledge is 
[algebra1 has been taught, the specifically linked to sensory and 
pedagogical problems it presents have by enactive experiences' (p. 289). Teachers 
no means been solved.' Kieran (1989, p. participating in the present study are 
53) states 'The challenge to researchers is encouraged to use group work and a 
to devise studies that will push forward problem-solving approach (although 
our knowledge of how students can come to these not enforced). Some teachers are to 
understand the structure of elementary use concrete analogies, 'keeping in mind a 
algebra and algebraic methods.' multi-modal approach' (Quinlan, 1992, p. 

We have much to learn about the role 350). 
of analogies, whether concrete or mental Not all concrete and mental analogies 
analogies, in the process of teaching and receive commendation. Halford and 
learning mathematics: 'Explanations of Boulton-Lewis (1992) devoted 26 pages to 
concept development and the role of discussing 'the values and limitations of 
concrete materials in learning have not analogies in teaching mathematics.' 
been the focus of in-depth studies' They pointed out that the structure 
(Owens, 1994, p. 455) ..... little work has mappings involved in using analogies 
been directed towards its role [the role of impose a processing load and that some 
analogy] in children's learning of basic analogies can increase the learning or 
mathematical concepts and procedures' memory load rather than reduce the 
(English, 1994, p. 213). It is hoped that effort needed. Lesh, Landau and 
the project which is the subject of this Hamilton (1983) found that the choice of 
paper will make some worthwhile concrete model was crucial. Pizzas and 
contribution in this area. cakes as models hindered the learning of 

addition of fractions, maybe, as Sweller 
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(1993, p. 10) suggests, because they were 
'redundant', whereas a model using egg­
cartons was highly successful: 'Virtually 
none of the students used paper and pencil 
for the egg addition problems. 
Characteristics of the ma terials 
themselves apparently facilitated the 
higher rate of correct responses' (p. 289). 
Ideally, a concrete representation 
'mirrors the structure of the concept and 
the child should be able to use the 
structure of the representation to construct 
a mental model of the concept' (Boulton­
Lewis & Halford, 1991, p. 37). 

The project is urgent and relevant. 
Insufficient research has been devoted to 
the analysis of the role of appropriate 
analogies in teaching and learning. The 
energies devoted to the project are 
focusing more and more on 
1 the qualities of useful analogies and 

2 an attempt to explicate their role in 
learning. 

Recent Research Findings 
At last year's MERGA Conference, the 
author gave a short but detailed report 
(Quinlan, 1994a) on an experimental 
design project in which one teacher taught 
two classes, in November 1993 at School 
A, to provide data for the comparison of 
two teaching methods. Both classes were 
led towards an understanding of 
equivalent linear algebraic expressions in 
one variable. Arithmetic examples were 
used as the basis of understanding for one 
class and a concrete analogue in the form 
of an objects-and-containers model was 
used to assist the process for the other 
class. No significant differences were 
detected between the classes before the 
four periods of teaching intervention but 
the latter class showed statistically 
significant advantages afterwards in both 
attitude and achievement on the subject 
matter taught. Analyses of variance for 
the outcomes on the Posttest using Pretest 
scores as covariates identified the effects 
of teaching methods as significant with p 
S .01, accounting for 62.1 % and 55.8% of the 

variance for attitude and achievement 
respectively. 

Questions arose as a consequence of this 
experimental support for the use of 
concrete analogues. Would a similar 
outcome be found with another pair of 
classes? What qualities are required of 
such an analogue and how should it be 
used if it is to assist learning? Is there 
any relationship between preferred 
learning styles and learning with or 
without concrete manipulatives? 

Two further experimental design 
stages of data collection were reported in 
Quinlan (1994b). In September 1994 at 
School B, the topic of indices was taught 
to two Year 8 classes by their regular 
teacher. Only one of the classes made use 
of unit cubes for representing exponential 
growth, leading to an exploration of the 
properties of indices. The other class 
followed a similar teaching sequence and 
style but without the model. For 
example, both made sets of cards folded 
as 'tents' bearing paired expressions for 
the same sequence of numbers, such as 8 on 
one side and 23 on the other, and used 
these when exploring the properties of 
indices. The class using the concrete 
approach (with the cubes) was 
significantly better than the class 
following the traditional approach on 
Pretest measures of attitude to algebra, 
overall performance in algebra, and total 
scores on three test questions (Questions 8, 
10 and 14) specifically about indices. 
These three questions covered aspects 
such as Write a3n x an in the form an i 
Which is larger 50150 or 15050 ? 2x or 
8Y ? They remained Significantly better 
on all these measures in the Posttest. On 
the question of comparing 2x with 8Y, 
analysis of variance showed the effects 
of teaching methods as statistically 
significant with p < .05, even though the 
proportion of variance explained was 
only 19.1%. Over the teaching 
intervention period both classes 
improved significantly on Question 7, 
which asked students to find the values 
of the algebraic symbols in the following 
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four representations of the number 64: 2d; 
22 x 2 x 2a ; (21)2; 4w X 42 . Thus, the 
data gave support to the view that, 
although the use of the unit cubes took up 
students' time, this concrete analogue did 
not overload their brain capacity and so 
hinder learning. It was clearly not a case 
of the possibility flagged by HaIford 
(1993, p.381) with reference to using base 
ten blocks for subtraction, namely, 'if the 
justification [of analogs] is not understood, 
the concrete analogs may be worse than 
useless, because they are extra things to 
learn, take time to manipulate, and cause 
distraction: 

In School C, what could be regarded as 
the worst case scenario for using concrete 
manipulatives emerged in September 
1994. The regular class teacher taught 
two Year 8 classes about factorization and 
expansion of first and second degree 
expressions. Before the teaching 
intervention, the class to use a 
traditional symbols approach was 
markedly superior to the class chosen to 
use an area model with cut-out rectangles 
and squares. The students in the latter 
class had great difficulty at first in 
relating algebra to the reality expressed 
by the areas of separate shapes and the 
composite rectangles which they 
produced. For instance, when two 
rectangles had been pushed together to 
give a rectangle with a length of y + z, 
many wrote y% as the length. The first 
period was spent trying to iron out some of 
the difficulties rather than making much 
progress with factor problems. In the next 
period the students were instructed to 
write the area calculations on each piece 
of cut-out paper squares and rectangles. 
For instance, 
A = 1 x y = y or A = Y X % = y%. This 
strategy reduced the unproductive effort 
needed 'to attend to several sources of 
information simultaneously' (Sweller, 
Chandler, Tiemey &: Cooper, 1990, p. 
189). Despite these difficulties, with 
four input lessons they recorded 
significant improvements, with p S .01, in 
factorizing jk + mk , k2 + 2mk , 6d + 3 , 
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and 6cd + 3d, and in expanding j(3 + m) 
and 2j(j + 3k). Whether they would have 
learnt more or less without the area 
model is not established. The advanced 
class recorded significant improvement, 
with p S .01, in far more difficult 
questions, such as expanding (1 + p)(2q + 
r) and factorizing 3xz + yz + 6x + 2y. Of· 
the 20 students interviewed, 70% said 
that they really enjoyed using the area 
shapes and another 10% said they 
enjoyed them some of the time. Also 70% 
said that the materials helped them 
learn, with another 20% saying they 
helped sometimes. Their attitudes to 
algebra improved from being 
significantly poorer than those of their 
counterparts to almost matching them. 

Dempster (1981), after exhaustive 
examination of many studies, was able to 
claim that 'memory span is indicative of 
overall intellectual ability' (p. 65). 
Moreover, Halford (1993) pointed to the 
potential disadvantage that some 
analogues 'can actually increase the 
learning or memory load' (p. 220). 
Boulton-Lewis used digit span 'to 
determine short-term memory' (1987, 
p.335). Digit-span tests were given to 
most students in Schools Band C. The 
digits were in three lists, each growing 
from 2 to 8 digits. These were assembled 
from information supplied to the author 
by Boulton-Lewis (personal 
correspondence, 16th November, 1994), 
with the addition of 7- and 8- digit lists 
taken by the author from a set of random 
numbers. The numbers were read to the 
students at about one per second, 'the rate 
normally used in memory span tasks' 
(Dempster, 1981, p. 68). The hypothesis 
that those with larger digit spans would 
manage the concrete model more 
effectively than those with shorter spans 
was not supported by the data from 
either School B or School C. Efforts to 
link the digit span result to performance 
were not successful using correlations with 
learning gains, analyses of variances, or 
examining the extreme scores on 

. performance variables. Of interest is the 



fact that the classes recorded no 
significant differences on digit spans. 

Qualities of Appropriate 
Analogies 
The analysis of scientific analogies given 
by Gentner (1982) has been found 
particularly helpful in analysing the 
qualities of the concrete analogies used. 
The objects-and-containers model used in 
School A is discussed here (cf. Quinlan & 
Collis, 1990a). This concrete analogue 
provides a sound base specificity since the 
numerical value of any modelled 
expression is represented by the actual 
number of tangible objects used. An 
arbitrary value for an algebraic variable 
is simply represented by the number of 
objects placed in a container. Nodes 
which are all aspects of algebraic 
expressions to be considered in the target 
algebraic system are characterized as 
Variable (F), Sum of Variable and 
Constant (G), Multiples of Variable (H), 
Multiples of Expressions (1), and 
Equivalent Expressions (J). The clarity of 
the model resides in the fact that there is 
a one-to-one relationship between these 
target nodes and corresponding base nodes 
in the concrete model. A variety of 
algebraic expressions can be modelled 
with clarity and the students soon can 
explore many relationships, thanks to the 
richness of the model. This richness helps 
students to write great varieties of 
equivalent algebraic expressions. 

As was discussed in Quinlan and ColIis 
(1990b, pp. 445 - 448), the objects-and­
containers model has the strengths of 
commutativity, transferability and 
isomorphism. The model matches 

admirably the definition of 
representations and isomorphism as given 
by Coombs, Dawes and Tversky (1970, 
p.11). It can be used to explore mappings 
back and forth between the algebraic 
symbolic form and the concrete form 
because of the isomorphism between the 
structure of the algebra and that 
presented by the model. 

It is becoming clearer that the concrete 
models used in Schools A, Band Care 
extremely beneficial in clarifying the 
structure of the arithmetic required for 
the understanding of the ensuing algebra. 
As HaIford and Boulton-Lewis (1992, p. 
207) point out: 'Elementary algebraic 
concepts are acquired by using previously 
learned number concepts based on 
constants as mental models.' HaIford 
(1993, p. 222) argues that 'A good source 
for learning algebra depends on having a 
good mental model of arithmetic 
relations. To the extent that concrete 
analogs promote such a mental model of 
arithmetic, they facilitate acquisition of 
algebra.' 

The point to be made here is that the 
objects-and-containers model not only 
clarifies for students the arithmetic 
structures relevant to the algebra of first 
degree expressions in one variable. The 
model then helps them apply their 
mental model of arithmetic to algebraic 
structures where arithmetic 
generalizations need to be understood. 

Two possibilities come to mind. First, 
there could be mutual interaction between 
the chosen model, arithmetic, and 
algebra, as depicted in Figure 1. 

5 MODEL :>~ 
------~ c ARITHMETIC::> ..... -~. C ALGEBRA ~ 

Figure 1. Mutual interaction between arithmetic, model and algebra 
Secondly, the model could be an example of what Oement (1993, p. 1244) calls a 'brid~g analogy' 
which assists the learner 'because it is easier to comprehend a close analogy than a dIStant one; the 
bridge divides the analogy into two smaller steps that are easier to comprehend than one large step.' 
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-pte.1arge step, in this c::ase, is to move from arithmetic as the base to algebra as the target. As depicted 
m FIgure 2, the modellS capable of linking arithmetic to algebra. 

C A1U1HMEl1V •• C MODEL ~ •• CALGEBRA ~ 
Figure 2. A model as a bridging analogy between arithmetic and algebra 
In the light of this realization, the The revised versions of worksheets 

worksheets for introducing students to will be used in 1995. 
equivalent expressions with the aid of . 
the objects-and-containers model have Research Plans for 1995 
been revised so that the first activities During May 1995 data will be collected 
make use of sets of objects to represent from 20 classes and further data may come 
numbers (Node A) and to clarify the from another two classes a little later. 
arithmetic processes of forming a sum (B), The researcher is to supply the 
a product (C), a multiple of a sum, (D) worksheets for the 600 or more students 
and equivalent forms of the same number involved. All classes will complete a 
(E). Revision of such arithmetic concepts, pretest and, after four teaching 
the nodes in Gentner's (1982) terms, intervention periods, a posttest. The 
should precede the use of the model for diversity of teaching approaches under 
algebra (with arbitrary numbers in study will cover Arithmetic, Symbolic, 
containers). and Concrete styles. For five pairs of 

Thus, using sets of objects, the students classes an experimental design will be 
could be asked to build a set of 3 objects used, having the same teacher use 
(Node A) and a set of 5 objects and use different styles in each class. The other 
these to show the sum of 3 and 5 (B). 12 classes will be allocated particular 
Then they could build two more lots of 3 + styles or mixtures of styles. The area 
5 to show 3(3 + 5) or three lots of 3 + 5 (D). model and the objects-and-containers 
The objects could then be re-arranged to model, discussed above, will be used by 
show equivalent numbers such as 3 x 3 + 3 some Year 8 and some Year 7 classes 
x 5 or 13+ 11 (E). When the notion of a respectively. 
variable number (Node F) is introduced A questionnaire to identify the 
to be represented by an arbitrary number students' preferred thinking/learning 
of objects (y) placed in a container, the styles will be completed soon after.· This 
following sequence of algebraic will be based on the Ned Hermann (1988) 
expressions could be modelled: approach and should provieJe much more 

y(Node F) ; Y + 5 (Node G); 3(y + 5) useful data than that obtained using a 
(Node 1); 3y + 15 (Node J); y + 3 + 2(y + digit-span measure. 
6) (Node J) . References 

In a similar way, the area model used 
in School C has been revised by supplying 
sets of cut-out shapes which enable the 
students to explore factorization and 
expansion entirely in the arithmetic 
system before they progress to use the 
same principles in the algebraic world. 
Thus they manipulate composite 
rectangles to show such relationships as 
2 x 3 + 2 x 4 = 2 (3 + 4) and (3 + 4)(2 + 3) = 3 
x2+# +4x2+4x3 beforePxQ+PxR = 
P(Q+R) and (R+P)(Q+R) = RQ+R2+PQ+ 
PR. 
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