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This paper reports research into 
kindergarten students' spatial 
constructions and describes 
advancements in students' problem 
solving under adult guidance. In 
particular, it reports kindergarten 
students' attempts to match solid 
shapes with their respective nets 
and to interpret isometric drawings 
of stacked cubes. 
Recent research investigating 

mathematical concepts and processes of 
children in their first year at school has 
been largely influenced by constructivist 
views of learning. For example, Fosnot 
(1990), Macmillan (1990) and Wright 
(1990) provide examples in the context of 
probability, money and number, 
respectively, of how kindergarten 
students can be guided towards a closer 
awareness of their own mathematical 
thinking through interactive 
communication. 

Through social interaction in an 
instructional setting, students may be 
nurtured to proceed beyond their present 
state of development to a higher level of 
development, as emphasised in the 
writings of Vygotsky, who introduced the 
notion of zone of proximal development, 
defined as "the distance between the 
actual development level as determined 
by independent problem solving and the 
level of potential development as 
determined through problem solving 
under adult guidance or in collaboration 
with more capable peers" (Vygotsky, 
1978, p. 86). The zone of proximal 
development focuses on those intellectual 
capabilities which are in the process of 
maturation, though currently in an 
embryonic state - capabilities such that 
"what children can do with assistance 
today they will be able to do by 

themselves tomorrow" (Vygotsky, 1978, 
p.87). 

Piaget and Inhelder (1956) considered 
that children's representation of space is 
not a perceptual reading off of their 
spatial environment, but is constructed 
from prior active manipulation of that 
environment. Subscribing to this view, 
Wheatley and Cobb (1990) believe that 
children construct through their actions 
an image of an object that may later be re­
presented and transformed. 

As with the contribution of Piaget and 
Inhelder, the theory of Pierre and Dina 
van Hiele as it relates to children's 
levels of geometric thinking (van Hiele, 
1959; van Hiele, 1986) has been very 
influential. The van Hieles postulated 
five levels of mental development in 
geometric thinking: recognition, analysis, 
ordering, deduction and rigour. At the 
first of these levels students identify and 
operate on shapes according to their 
appearance. At the second level students 
recognise and charact~rize shapes. by 
their properties. Students can classify 
figures hierarchically, by ordering their 
properties, and give informal arguments 
to justify their classifications at the 
third level. Students can establish 
theorems within an axiomatic system at 
the fourth level and can reason formally 
about mathematical systems at the fifth 
level. It is claimed that most students at 
primary school level, the first seven 
years of formal schooling, do not progress 
beyond the second level. For students in 
transition, reliable classification is 
difficult (Fuys et al., 1988). Clements and 
Battista (1992) suggest a sixth level, 
termed 'pre-recognition', a level of 
thinking more primitive than, and 
probably pre-requisite to, van Hiele's 
Level 1. It is claimed that at this level 
students may be unable to identify 
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common shapes because they lack the 
ability to form requisite visual images; 
that is, they may attend to only a subset 
of the shape's visual characteristics. 

The theories of both Piaget and the 
van Hieles emphasize the role of 
students in actively constructing their 
own knowledge. Both stress the 
importance of challenging the learner's 
thinking; Piaget stresses the role of 
disequilibrium while van Hieles suggest 
'crises of thinking'. 

Piaget believed that the child's 
progressive organization of geometric 
ideas follows a definite order, and that 
this order is logical rather than 
historical in that initially topological 
relations, such as enclosure, connectedness 
and continuity, are constructed; later 
projective and Euclidean relations are 
developed (Gruber &: Voneche, 1977). 
This has been termed the 'topological 
primacy thesis'. Research. over the last 
two decades has tended not to support 
this theory (elements &: Battista, 1992). 

Some confusion has resulted with 
respect to the use of the terms 'period', 
'phase', 'stage' and 'level'. Von 
Glasersfeld and KeIIey (1982) discussed 
the differences between them and noted 
that while the first three refer to 
stretches of time, 'level' does not refer to 
a stretch of time at all but implies a 
specific degree or height of some 
measurable feature or performance. 

The research reported in this paper 
focuses upon two separate, yet related, 
studies involving kindergarten students' 
spatial constructions involving three 
dimensional shapes: a) matching solid 
shapes with their nets and b) 
interpreting isometric drawings of 
stacked cubes. 

Matching solid shapes with their 
nets 
Background to Study 
While observing kindergarten students 
using Polydron interlocking squares and 
triangles to form three-dimensional 
shapes, the author noted that some 
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students first formed the correct two­
dimensional net before folding up the 
pieces to form the three-dimensional 
construct. This seemed to indicate that 
these students were able to mentally 
transform the three-dimensional shape 
into its corresponding two-dimensional 
net. 

This prompted two questions: 
a) Are kindergarten students able to 

associate foldout shapes (nets) with 
certain polyhedra? 

b) What advances in the thinking of 
the students occur when they are 
challenged to justify their answers? 

Bourgeois (1986) investigated with 
year three students a question similar to 
the first question. 
Method 
To facilitate investigation of these 
questions, a set of tasks was devised and 
presented to 33 students who were selected 
representatively from two kindergarten 
classes, the pupils being individually 
interviewed by the author. Each 
interview was recorded on video for 
subsequent~ysis. 

A cube, a triangular prism, a square 
pyramid and a tetrahedron were formed 
from Polydron interlocking squares and 
triangles. Also nets for each of these 
solids were formed from the Polydron 
material. The four nets (Figure 1) were 
laid out on the table in view of the 
interviewee, who was handed the cube 
and asked, as the interviewer pointed to 
the nets, "Which of these will fold up to 
make this shape?" When the 
interviewee had chosen a particular net, 
hel she was encouraged to explain why 
that had been chosen. Upon removal of 
the cube, a similar procedure was 
followed in turn for the triangular prism, 
square pyramid and tetrahedron. 



Figurel 
The interviewer asked additional 

questions which had the purpose of 
challenging the interviewee's thinking. 
If, for example, the interviewee 
responded that he/she had chosen a 
particular net ''because the shapes (net 

and solid) are the same", the interviewer 
asked the child to explain in what way 
they were "the same". Particularly in 
those cases where an incorrect matching 
of net and solid had occurred, the 
interviewer asked the child to identify 
and count the shapes of the faces of the 
solid and compare these with the 
selected (incorrect) net. 
Results 
Table 1 provides details of the number of 
students who selected the correct net: a) 
initially or b) after interaction with the 
interviewer. 

Table 1 Correct Responses for Matching Nets to Solids (n = 33) 
Solid Initially After Interaction 

Cube 30 2 
Triangular Prism 7 
Square Pyramid 17 
Tetrahedron 24 

A typical explanation given by 
students, who correctly matched the cube 
with its net, was "because it has all 
squares". Five students commented that 
the net would "fold up" to make the cube. 

When attempting to match the 
triangular prism with its net, 13 of the 
students initially selected the net for the 
square pyramid, many of them explaining 
that "it has five shapes". 
Discussion 
Greatest difficulty was experienced by 
students when attempting to match the 
triangular prism and, to a lesser extent, 
the square pyramid with their respective 
nets. This outcome was expected by the 
researcher since both solids have five 
faces comprising a combination of squares 
and triangles; hence one could easily be 
confused with the other. That more 
children correctly matched the square 
pyramid with its net than matched the 
triangular prism with its net suggests that 
it is easier for students to imagine the 
folding up of the net to make the square 
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pyramid. An alternative explanation is: 
prior to pupils' attempts to find the net 
for the square pyramid, they engaged in 
interactive communication with the 
interviewer as they attempted to find 
nets for each of the cube and triangular 
prism; this dialogue may have brought 
about advancements in some of the 
students' thinking, as suggested by the 
increasing number of correct responses for 
the square pyramid and for the 
tetrahedron. To test these possibilities, a 
further investigation was carried out 
with 10 more students for whom the order 
of presentation of solids was varie_d to 
cube, square pyramid, triangular prism 
and tetrahedron. The results of this 
further investigation, which are shown in 
Table 2, support the second hypothesis -
that advancements in the student's 
thinking are attributable to interactive 
communication between the child and the 
interviewer. 
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Table 2 Correct Responses for Matching Nets to Solids (n = 10) 
Solid Initially After Interaction 

Cube 8 2 
Square Pyramid 4 6 
Triangular Prism 7 2 
Tetrahedron 8 1 

Tl'\is advancement in thinking is D 
illustrated in the following episode in 
which the interviewer (I) interviews 
Diana (D), aged 5 years 6 months: 

I 

Three! 

Has that got three squares 
(pointing to net for square 
pyramid)? 

I Which one would make this 

D 

I 

D 

I 

D 

I 

D 

I 

D 

I 

D 

I 

D 

I 

D 

I 

(holds up the triangular 
prism)? 

This one (pointing to the 
tetrahedron) 

Why? 

It has these shapes. 

What shape is this red shape 
(pointing to a square)? 

Square. 

Has this (net for tetrahedron) 
got any squares? 

No. 

. So could this (net for 
tetrahedron) make it? 

No (Points to net for square 
pyramid). 

Oh, this one might make it? 
Let's have a think and see if it 
could. I How many squares has 
this got? 

One. 

What about that one (nodding 
towards the solid triangular 
prism)? 

Got one (shows one face). 

Is that all? . No other squares? 

One there, one there (pointing 
to the other two square faces). 

Oh! How many squares does it 
have? 
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D 

I 

D 

I 

D 

I 

D 

I 

D 

No. 

(mimics) No! So what one is 
going to make this one? 

(Points to net for triangular 
prism) 

Why? 

It's got three squares. 

What else does it have? 

Two triangles. 

What about that one (pointing 
to solid triangular prism)? 

One, two. (She smiles and 
gestures with her arms in an 
attitude of obvious success.) 

Following this Diana was presented 
with the square pyramid and asked to 
select its net. She reflected for a moment 
and then in a very confident manner 
pointed to the appropriate net. When 
asked for the reason, she responded 
without hesitation "because it's got one 
square and one, two, three, four of them 
(triangles)" . 

Interpreting isometric drawings 
of stacked cubes 
Background to Study 
The researcher observed kindergarten 
students as they used coloured cubes to 
form structures as represented by two­
dimensional drawings. These activities 
prompted the following questions: 

a) Are kindergarten students able to 
correctly determine the number of cubes 
required to form a structure represented by 



a two-dimensional drawing where some 
cubes are hidden from view? 

b) What advances in the thinking· of 
the students occur as a result of 
interactive communication? 
Method 
To facilitate this investigation, 30 
students were representatively selected 
from two kindergarten classes. In an 
individual interview, each pupil was 
presented with an isometric drawing of a 
stack of four cubes (Figure 2) and asked to 
state how many cubes he/she would need 

igure 2: Stack of four cubes Qeft) and five cubes (right) 

to form it. The same procedure was 
repeated for a stack of 5 cubes (Figure 3) 
and for a stack of 10 cubes (Figure 4). 
Where students appeared merely to count 
the visible cubes, the interviewer pointed 
to an elevated cube, asked whether it was 
on the table or "up in the air" and then 
asked how it could be "up in the air". 
When students gave a number of cubes 
greater than those which were visible, 
they were asked to state where the 
"hidden" ones were. 

Results cubes: a) initially and b) following 
Table 3 provides details of the number of interaction with the interviewer. 
students who stated the correct number of 
Table 3 Correct Responses for Number of Cubes (n = 30) 

Task Initially After Interaction 
4-cube example 5 12 
5-cube example 12 11 
10000be example 4 3 

Those students who correctly stated cubes under three of the visible cubes, but 
that four cubes were required for the first either counted too many or too few. 
example, when asked how they knew, Discussion 
responded that "there's another one Increased initial success with the second 
underneath". A similar response was task seems to result from the experience, 
given for the second example. including interactive communication, 

Although only seven pupils were able associated with the first task. This was 
to solve the third task, a further ten also evident for the more difficult third 
pupils realised that there were hidden 
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task where only eight pupils were 
unaware of hidden cubes. 

The following episode relates to the 
third task and involves Daniel (D), aged 
5 years 5 months, and the interviewer (I). 
This illustrates students' mathematical 
reasoning as revealed in this study. 
D Eight 
I How did you know eight? 
D Ioounted them. 
I Well, there must be some hiding ones. 
D Yes, behind there. 
I Whereabouts? 
D Behind there. 
I Which ones are they hiding under? 
D That one (pointing to the highest) and 
...... (pause) .. tl'iose two ..... that means ten! 

It seems reasonable to claim that 
asking Daniel to explain how he 
obtained his answer resulted in his 
reflecting upon his reasoning and in so 
doing he re-organised his understanding 
of this situation. 
Conclusion 

In both studies it was evident that 
advancements in spatial thinking of 
kindergarten students occurred following 
interactive communication with the 
interviewer. From the first, it can be 
concluded that a majority of kindergarten 
students can associate the cube, the 
triangular prism, the triangular pyramid 
and the tetrahedron with their 
respective nets. From the second, it may 
be concluded that a majority of 
kindergarten students are aware of 
"hidden" cubes in isometric drawings. 

The results from both studies support 
Wright's (1994) contention that in the 
first year of school many children are 
under-challenged in mathematics. 
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